• Title/Summary/Keyword: Invariant zeros

Search Result 13, Processing Time 0.02 seconds

Mutual Detectability and System Enlargement of Detection Filters: An Invariant Zero Approach

  • Kim, Yong-Min;Park, Jae-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.769-774
    • /
    • 2006
  • In this paper, we discuss the problem of non-mutual detectability using the invariant zero. We propose a representation method for excess spaces by linear equation based on the Rosenbrock system matrix. As an alternative to the system enlargement method proposed by White[1], we propose an appropriate form of an enlarged system to make a set of faults mutually detectable by assigning sufficient geometric multiplicity of invariant zeros. We show the equivalence between the two methods and a necessary condition for the system enlargement in terms of the geometric and algebraic multiplicities of invariant zeros.

Zeros and Step Response αlaracteristics in LTI SISO Systems (선형시불변 단일입출력 시스템의 영점과 계단응답 특성)

  • Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.804-811
    • /
    • 2009
  • This paper deals with the relationship between zeros and step response of the second and third order LTI(Linear Time Invariant) SISO(Single-Input and Single-Output) systems. As well known, if a system has a single unstable zero, it shows the step response with undershoot and, on the other hand, a stable zero slower than the dominant pole causes the system to have the step response with overshoot. Generally, in the case of a system with two unstable real zeros, it is known to have B type undershoot[7]. But there are many complex cases of the step response extrema corresponding to zeros location in third order systems. This paper investigates the whole cases depending on DC gains of the additive equivalence systems and they are to be classified by the region of zeros which are related to the shape of the step response. Moreover, monotone nondecreasing conditions are proposed in the case of complex conjugate zeros as well as the case of two stable zeros.

Study on an optimum solution for discrete optimal $H_{\infty}$-control problem (이산 최적 $H_{\infty}$-제어 문제의 최적해를 구하는 방법에 대한 연구)

  • 하철근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.565-568
    • /
    • 1996
  • In this paper, a solution method is proposed to calculate the optimum solution to discrete optimal H$_{.inf}$ control problem for feedback of linear time-invariant system states and disturbance variable. From the results of this study, condition of existence and uniqueness of its solution is that transfer matrix of controlled variable to input variable is left invertible and has no invariant zeros on the unit circle of the z-domain as well as extra geometric conditions given in this paper. Through a numerical example, the noniterative solution method proposed in this paper is illustrated.

  • PDF

Zeros and Step Response Characteristics in LTI SISO Systems with Complex Poles (복소극점을 갖는 선형시불변 단일입출력 시스템의 영점과 계단응답 특성)

  • Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • This paper deals with the relationship between zeros and step response of the second and third order LTI (Linear Time Invariant) SISO (Single-Input and Single-Output) systems with complex poles. Although it has been known that the maximum number of local extrema is less than the number of zeros in the system with only real poles[8], some cases with complex poles are shown in this paper to have many local extrema. This paper proposes monotone nondecreasing conditions and describes the relationship between the transient response and the number of local extrema in step response with each region of zeros.

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 저차제어기의 설계: 특성비지정 접근법)

  • Hua, Jin Li;Lee, Kwan-Ho;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.158-160
    • /
    • 2005
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller and furthermore. the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

  • PDF

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 3-파라미터 제어기의 설계: 특성비지정 접근법)

  • Jin Li-Hua;Lee Kwan-Ho;Kim Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.20-23
    • /
    • 2006
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTI) plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with the specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller. Furthermore, the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

THE CHOOSING AND ANALYSIS OF WEIGHTING MATRIX IN OPTIMAL CONTROL DESIGN. (최적제어 설계에 있어서의 하중행렬의 선택과 해석)

  • Hwang, Chang-Sun;Kim, Chung-Tek
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.62-65
    • /
    • 1989
  • Optimizing transient response for both tracking reference signals and disturbance rejection is determined by the poles and zeros of the transfer function. Thus, optimal pole assignment and how should weighting matrix for the performance index be chosen is very important to achieve optimum transient response. This paper focus its attention on the choosing and analysis of weighting matrix for optimum pole assignment. Optimum pole assignment is defined for linear time-invariant continuous systems.

  • PDF

AN ALGORITHM FOR DETERMINING THE WEIGHTING MATRICES OF THE QUADRATIC PERFORMANCE INDEX IN OPTIMAL CONTROL (최적제어 설계에 있어서의 2차형 하중행렬의 한 결정법)

  • Hwa, Chang-Sun;Kim, Chung-Tek
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.407-410
    • /
    • 1989
  • Optimizing transient response for both tracking reference signals and disturbance rejection is determined by the poles and zeros of the transfer function. Thus, optimal pole assignment and how should weighting matrix for the performance index be chosen is very important to achieve optimum transient response. This paper focus its attention on the choosing and analysis of weighting matrix for optimum pole assignment. Optimum pole assignment is defined for linear time-invariant continuous systems.

  • PDF

Analysis and Design Using LMI Condition for C (sI-A)^{-1} to Be Minimum Phase (C(sI-A)-1B가 최소위상이 될 LMI 조건을 이용한 해석과 설계)

  • Lee Jae-Kwan;Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.895-900
    • /
    • 2005
  • We derive a linear matrix inequality(LMI) condition guaranteeing that any invariant zeros of a triple (A, B, C) lie in the open left half plane of the complex plane, i.e. $C(sI-A)^{-1}B$ is minimum phase. The LMI condition is equivalent to a certain constrained Lyapunov matrix equation which can be found in many results relating to stability analysis or control design. We show that the LMI condition can be used to simplify various control engineering problems such as a dynamic output feedback control problem, a variable structure static output feedback control problem, and a nonlinear system observer design problem. Finally, we give some numerical examples.