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A Design Method Reducing the Effect of Zeros of a Cascaded Three—Parameters
Controller: The Characteristic Ratio Assignment Approach

SBIL-ZEE & k&
(Li-Hua Jin - Kwan-Ho Lee * Young-Chol Kim)

Abstract - This paper presents a new approach to the problem of designing a cascaded three-parameters controller for
a given linear time invariant (LTI) plant in unity feedback system. We consider a proportional-integral-derivative (PID)
and a first-order controller with the specified overshoot and settling time. This problem is difficult to solve because there
may be no analytical solution due to the use of low-order controller. Furthermore, the zeros of controller just appear in
the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that
the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given
interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in
order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in
parameter space. Several illustrative examples are given.
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1. Introduction set of PID/first-order controllers by means of Dattal[2]
and Tantaris[3]. Let the stabilizing set be S. Then we
Under the structure of controller cascaded with a LTI will investigate a way that extracts a subset of
plant in unit feedback system, we consider a problem of controllers from &, which satisfies the time response
designing a three-parameters controller that meets the specifications. The key idea of this approach is to impose
given time response specifications such as overshoot and a constraint on the controller parameters so that zeros of
settling time, if any. This is simple but not easy to the controller are distant from the dominant pole of
tackle. The reason is that the existence of such controller closed-loop system to the left in the s-plane as far as
can not be analytically solved for the case where the the given interval. Both the dominant pole and the
order of controller is lower than n—2, where n is the constraint can be approximately represented in terms of
order of plant. Furthermore, the other difficulty comes up plant parameters and some design  parameters,
from the fact that the zeros of the closed-loop system characteristic ratios «; and a generalized time constant 7.
must include the zeros of controller. These zeros We will give several examples.
generally affect the overall system in its damping.
However, the zeros of controller in the two parameter 2. Definitions and Preliminaries
configuration do not appear in the numerator of the
overall system. The transient response control for the Consider a polynomial
case has been investigated in [1]. 5(s) =a,s" ++ays* +a5+a, a

In this paper, we present a new design method that
will be able to reduce the effect of zeros of controller in
cascade structure. We begin with finding all stabilizing

The characteristic ratios o, and the generalized time

constant T are defined as [1,4]
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and the settling time of the system can be controlled by
7. These two parameters will be used when we compose
a proper target polynomual for time response
requirements.

The characteristic pulsatances B; and the pseudo break

frequencies «? are defined by [4,5]
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Both definitions are used as approximate break points
in Bode plot. It has been observed in [3] that the pseudo
break point is better approximation comparing with
pulsatance. The lowest break frequencies of and 8,
correspond to the equivalent real poles which are placed
nearest from the origin in complex plane. Here, the
negative real pole nearest from the origin is defined as
the dominant pole. Therefore, we take the «f of a
characteristic polynomial as its dominant pole.

The design objectives considered on the time response
are: (i) slow response acceptable but strictly small
overshoot, and (ii) small overshoot admissible but strict
settling time. In next section we will address how we
design a PID/first-order controller satisfying the above
objectives.

3. Controller design with fixed zeros

Fig. 1 shows a cascaded feedback configuration. It is
possible to consider a general transfer function model.
However, for the sake of explaining the effect of zeros of
controller more explicitly, we consider an all-pole plant:
_Ns) Ty
CD(s) ds"+tdstd,

G(s) 6)
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Fig.1. A unit feedback system with cascaded controller.

We first obtain a set of all stabilizing PID or first—
order controllers using the algorithms by Datta[2] and
Tantaris[3]. The detailed algorithms are omitted here. Let
the set be

S:={xz| (s, z) is Hurwitz}. 7
where z is the vector of controller parameters and 6(s, z)
is the characteristic polynomial. Now, we present the
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design approaches for PID and first-order controllers
respectively.

To reduce the effect of the zeros of controller, the
following inequality are strongly required. .

y—uf) >0 (8

where 7 denotes a fixed zero of controller to be selected.

From (5) and (8), the bound of o, can be calculated.
27
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3.1 PID controller design

The transfer function of PID controller is

B(s) kS +ks+k
)=y~ '

(10)

S
Let the vector of control parameters be

z, = {k, ki, ky}- (11)
Then the closed-loop transfer function is described by

= B(s)N(s) _ ny(k,s" +kst+k,)
T} = A(s)D(s)+ B(s)N(s) 5(s,z,) . (12)
where
8(s,2)=d,s" "+ (13)

ot dys® + (dy gk, )s” + (dy + gk, )s+ gk, -
It is clear that the design parameter is only o, 7 since
the controller parameters are only included in & 4;,4,.
From (13), we have
_ (dn +n0kp)2 o dy +ngk,
nok, (d, +ngk,)’ nok;
The zeros of closed-loop system are identical to the

(14)

o

roots of numerator of (10). Here we impose the following
constraint on the controller parameters so that the nearest
zero from origin is placed at v, where v is properly
chosen on the basis of the poles of the plant. In addjtjor{,
the other constraint (16) is required to guarantee (15).

k,— K —akk,

¥= ok, (15)
29k, ~k, <0 (16)
From (14) and (15), we can derive that
_ _ 'Yzmldl _'7272"0_0‘1‘10 -
k,=f, (o, 7)) = (’ff‘*%—wl)no . (17a)
_ _ oyd; ~yoydy
K, _fQ(a”T’ﬂ—___—('vz12+al°’rm1)n0' (17b)
~vPd, —oyd
ky=fylopny) = e e B - (17¢)
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According to (17), we see that the set (k,k.k;) is
obtained by the design parameters (o), 7). Note that this
set can not guarantee the stability. Thus, we have to
check whether the set is in the stabilizing set S.

Using the necessary condition of Hurnwitz stability
5,(s)>0, for i=0,1,---,n+1, and substituting (17) into (14),
the following inequality should be held.
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a < 77 . (18)
Combining (9) and (18), the admissible range of o
becomes
227 +7
<q < .
771 4 <3 19

3.2 First-order controller design

A first-order controller is

k s+
s) = ﬁ%: ‘s+:°. (20)
The vector of control parameters is
z, = {lg ki ko }- (21)
The closed~loop transfer function can be described by
M (ks +k,)
0= B R ey @
where
8s,z,)=d s" !+ (23)
+(d, +d,ly)s” + (dy +d, 1y +ngk, )s+ (dyly +1pky) -
Then o and 7 of (23) become
o = (d'()+d1l0+n0k1)2 _ dy +d,ly + gk, (24)
b (d ) (dgly +nghy) | doly + kg -

We impose the following constraint so that the zero of
controller is identical to the given zero 7, ie.,

’7=—k—- (25)

From (24) and (25), l; &, k, can be derived as
yroydy — P dy — oy dy

lozfl(al,nv):')ﬂzd1—12(10+01d2_’)7111d.2. (26a)
(?aﬁ—mldldo+aldf—ald2do)

k = YY) = .

y =fplom) T P pa—y (26b)
P —ryd dy + oy —

kg=f3(al,7:'7)=7( b mrouchdy +onds 0y (26¢)

(7’2d1_72d0+a1d2-77u1d‘2)n0 .

Equation (26) shows that the set (I, k,k) is obtained
by (a;,7v). This set can not guarantee the stability.
Thus, we have to check whether the set is in S To
satisfy the necessary condition of Hurwitz stability,
substituting (26) into (24), we obtain

2l —
al <((’YI'L_11)%)“ (27)
Combing (9) and (27), we have
277 7 (e, —dy)
7772_1<ozl< =14, " (28)

4. lllustrative examples and simulation results
In this section, several illustrative examples are given.

Example 1 (PID controller design):
A plant is assumed to be

1
Gl = S +75+12°
According to (17), the admissible region of (k, k. k) to
T7€[05,15] when o, =28,y=4 and to €[4, 20] when
o, =2.8,7=1 are depicted in Fig.2.

(29)
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Fig. 2. The admissible regions of (k, k;,k,) vs T and 7.
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Fig. 3. The step responses of overall system vs 7 and 7.

Fig. 3. shows the step response for the fixed (o,7)
and (o, 7), respectively. The numerical comparisons about
overshoot and settling time are represented in Table 1
and Table 2.

Table 1. Overshoot and settling time to different 7.

o =2.8,7=4 7=05 7=1.0 =15
overshoot 7.6430% 0.1363% 0.0966%
settling time 0.8282s 1.6486s 3.4272s

Table 2. Overshoot and settling time to different .

o =28,7=1 y=4 ~=10 =20
overshoot 0.1363% 0.1131% 0.0975%
settling time 1.6486s 1.6047s 1.5661s

Now, assume that we want to design a PID whose
step response satisfies the 1% overshoot and the 2%
settling time of 2sec,

The poles of plant (29) are —3,—4. Pat v=4, 7=1.
From (19), we have 2.133 <o, <5.333. From this analysis,
we select o =2.8, then the PID controller results in

2
s) = 1.421s" + 11.583+23.58 .

Then its closed-loop poles are —4,—2.2105+351.004 and
zeros are —4.1481,—4. As shown in Fig. 3, the overshoot
and settling time are given by 0.1363% and 1.6486s.




Therefore, the design is achieved successfully.

Example 2 (First-order controller design):
Suppose that a plant is

6(s) = 30

0.01s* +0.255 +s
Fig.4. illustrates the admissible region of (i, k. k) to
7€[0.6, 1.0] when o, =2.5y=20 and to YE[20,100] when

o =2.5,7=0.8 in accordance with (26). The time response

(30)

behaviors for the fixed (a;,7) and {o,7) are shown in
Fig. 5, Table 3 and Table 4.
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Fig. 4. The admissible regions of (I k. k,) vs 7 and ~.
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Cls) = 0.0243s +0.4866
5+10.95

The poles of closed-loop system are —20,—11.8485,
—2.0502+1.3990 and zero at —20. The overshoot and the
settling time are 09734% and 1.7236s
Therefore, we conclude that the design is successfully

respectively.
achieved.
5. Concluding remarks

Subject to a unit feedback structure, a new approach
for reducing the effect of controller’s zeros has been
proposed. We have considered a PID and first-order
controller with the specified overshoot and settling time.
The main idea of our method was to impose a constraint
on the controller parameters so that the zeros of resulting
controller are distant from the dominant pole of
closed-loop system to the left as far as the given
interval. We have employed the CRA in order to deal
with the time response specifications. As illustrated in
examples, we conclude that the proposed method works
well.

@ =25,7=20

rlll.L-u)
Fig. 5. The step responses of overall system vs 7 and ~.

Table 3. Overshoot and settling time to different .

v=20,y =2.5 =06 =08 7=1.0
overshoot 1.2868% 0.9734% 0.9053%
settling time 1.2882s 1.7236s 2.1408s

Table 4. Overshoot and settling time to different .

7=08,¢, =25 =20 y=40 v=100
overshoot 0.9734% 1.0220% 1.0522%
settling time 1.7236s 1.7363s 1.7590s

Now, let us consider a problem of finding a first-order
controller that meets the following specifications:

(i) overshoot is smaller than 1%,

(ii) 2% settling time is shorter than 2sec.

From (30), the poles of plant are 0,—~5,~20. Choose
¥=20 and 7=08. According to (28). we obtain
2.008 <@, <3.41.

When we select o =2.5, the resulting first-order

controller is given by
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