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A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters
Controller: The Characteristic Ratio Assignment Approach
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Abstract -This paper presents a new approach to the problem of designing a cascaded three-parameters controller for
a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID)
and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there
may be no analytical solution due to the use of low—order controller and furthermore, the zeros of controller just appear
in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so
that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the
given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment

(CRA) in order to deal with the time response specifications. It is noted that the proposed methods are

accomplished

only in parameter space. Several illustrative examples are given.
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1. Introduction
Under the structure of controller cascaded with a LTI
plant in unit feedback system, we consider a problem of
designing a three-parameters controller that meets the
given time response specifications such as overshoot and
settling time,
tackle the

such controller can not he analytically solved for the case

if any. This is a simple but not easy to

problem. The reason is that the existence of
where the order of controller is lower than -2, where »
is the order of plant. other difficulty
comes from the fact that the zeros of the closed-loop

Furthermore, the

system must include the zeros of controller. These zeros
generally affect the overall system in its damping. For the
similar problems with the two parameter configuration,
partial matching
concept[1] have been represented so far. Note that zeros of

many results based on the model
controller in this structure do not appear in the numerator
of the overall system.

In this paper. we present a new design method that will
be able to reduce the effect of zeros of controller on the
step response. We begin with finding all stabilizing
of Dattal2]

Tantaris[3]. Let the set be S Then we will investigate a

PID/first-order controllers by means and

2k AA
«HALAB BF TAH HEFE
AL KB EF TR 3% - T8+
% This research is supported in part by grant
R01-2003-000-11738-0 of KOSEF.

Three-parameters controller, Time response, Characteristic ratio, Generalized time constant, Pseudo break

way that extracts a subset of controllers from § which
The key idea of
this approach is to impose a constraint on the controller

satisfies the time response specifications.

parameters so that zeros of controller are distant from the
dominant pole of closed-loop system to the left in the
s-plane as far as the given interval. Both dominant pole
and the constraint can be approximately represented in
terms of plant parameters and some design parameters,
characteristic ratios g; and a generalized time constant ¢

We will give several examples.

2. Definitions and Preliminaries
Consider a polynomial
A9 =a,s"++ayst+a s+a,. N
The characteristic ratios g and the generalized time

constant ¢ are defined as [1,4]

2
ap= i ay; = 4 TN Zuml (2)
" ey e T aa,
= ®

41
It was shown in [14] that g/s of the denominator
polynomial of rational model closely relate to the damping
and the settling time of the system can be controlled by
r These two parameters will be used when we make a
proper target polynomial for time response reguirements.
The characteristic pulsatances g, and the pseudo break
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frequencies of are defined by [45]
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Both definitions are used as approximate break points in
Bode plot. It has [5] that the
pseudo-hreak point is better approximation comparing with
The d and g

correspond to the equivalent real poles which are placed

77()""1, /\01:'”1

been observed in

pulsatance. lowest break frequencies
nearest from origin in complex plane. Here, the negative
real pole nearest from origin is defined as the dominant
pole. Therefore, we take the o of a characteristic
polynomial as its dominant pole.

The design objectives considered on the time response
are: (i} slow response acceptable but strictly small
overshoot, and (i) small overshoot admissible but strict
settling time, In the next section we will address how we
design a PlID/first-order controller satisfying the above

objectives,

3. Controller design with fixed zeros
Fig.l shows a cascaded feedback configuration. It is
possible to consider a general transfer function model.
effect
controller more explicitly, we consider an all-pole plant:

However, in order to explain the of zeros of

5 N9 _ 7y
A9=p9 = ds*++dstdy
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Fig.i. A unit feedback svstem with cascaded controller.
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We first obtain a set of all stabilizing PID or first order
controllers  using  the Dattal2]  and
Tantaris[3]. The details about the algorithms are omitted
here. Let the set be

algorithms by
S Now, we present design
approaches for PID and first order controllers respectively.

To reduce the effect of the zeros of controller, the
following inequality are strongly required.

y—a’>0 (D
where y denotes a fixed zero of controller to be selected,
From (53 and (7). the bound of ¢ can be calculated.
N 9272
Vo

3.1 PID controller design
The transfer function of PID controller is

&)

_Bs k,§2+k stk; .
C(S)— A(S) s . ())
The closed-loop transfer function is described by
BONg____ nyllgsthstk)
TO=ZA309 +AIND X 10

where

A =d s+ +dyst Hd Fnpk Js? Hdytngk Jstngk;. (1D

It is clear that the design parameter is only g@,r since

the controller parameters are only included in 80, 8,8
From (11), we have

(dytngk)® dytnok,

ai*"okz(dl‘*'"ek)’ 7

The zeros of closed-lovp system are identical to the

(12)

roots of numerator of (9). Here we impose the following
constraint on controller parameters so that the nearest zero

from origin is placed at y where y is properly chosen,

ke \} ’;2"4}%1]?; .

= (13)

s de
From (12) and (13), we can derive that
2 2

_ _7 wd,—7d,—ad, "

k,, fl(ab &9 (722'2'1"6!1-71(11)120 . 14a)
2

= e L TG TN aydy e d 4b
k; fg(a’l, Ty (72T2+(11—ﬂ111)'ﬂo . (14b)
kd=f3(al, L R= mld!_ﬁzd‘ O_GI'd"‘l . (14c}

(P +a,—ying

According to (14), we see that the set (k,k,k) is
obtained by design parameters (e, 7). However, this set
can not guarantee the stability. Thus, we have to check
whether the set is in the stabilizing set §

Using the necessary condition of Hurwitz stability
8400, for i=0,1,-, nt+l, and substituting (14) into (12).
the following inequality should be held.

2.2
LT
a poy (15
Combining (8) and (15), the admissible range of g
becomes
2! 7 (16)
i1 T
3.2 First-order controller design
Consider a first-order controller
_ By _ stk ,
d9= Als) s+, an
The closed-loop transfer function can be described by
H9INg) = nO(kls_i'iOZ (18
TO= A5 +BING X ¥
where
HY=d g4 0D
Hd\ Hdyl st Hdyd Ly tagk s Hdlgtagky)
@, and zof (19) become
(dy+d, Ly +nk)? dy+d Ltk (20

TG A d k)T T dlytaky
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The zero of closed-loop system is equal to the roots of
numerator of (17). We impose the following constraint so

that the zero of controller is identical to the given zero ¥

k
=z @D
1
From (20) and (21), [, 4k, can be derived as
2
r’dy—(r—Dad,
=f(e, 9= . 2
0 1(”1 T 7) Tz(do"‘ﬂl)'*'(ﬂ'_l)aldg (22a)
(rd,—t%dy+a d,—yar dn
b= - AT 197 o
1=frla, 59 (P2 —mddotad-add) (22b)
27 .2 _
ho=fy(ay, 5, D= Arc’d) —r%dy+ad,—ymdn, (920)

(Cdi—mddyradi—addy) -
Equation (22) shows that the set (ly, by, Ky is obtained
by (a,, 1) However, this set can not guarantee the
stability. Thus, we have to check whether the set is
included in § To satisfy the condition of
Hurwitz stability, substituting (22) into (20), we obtain

a s —d
| 4

necessary

(r—Dd, 23
Combing (8) and (23), we have
2% 2(nd\ —dy) .
P ] a< (—Dd, (24)

4. lilustrative exampies and simulation results
In this section, several illustrative examples are given.
Example 1 (PID controller): Consider a plant shown in

RN
Q=

According to (14), the admissible region of (kb k) to

=[0.5,1.5] and for o,=28, y=4, and to =4, ] for

a,=2.8, r=1 are depicted in Fig.2
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Fig.2. The admissible regions of (kp_k‘.' k) vs rand

Table 1. and Table 2 show the time response results
for the fixed ay, 7 and @, ¢ respectively.

Table 1. Overshoot and settling time to different ¢

a,=2.8, =4 =05 =10 —=1.5
overshoot 7.5430% 0.1363% 0.0966%
settling time 0.8282s 1.6486s 3.4272s

Table 2. Overshoot and settling time to different y

a,=2.8, r=1 r=4 r=10 r=2
overshoot 0.1363% 0.2356% 0.2362%
settling time 1.6486s 3.4287s 3.4313s

Suppose that of a certain
requires the 19 overshoot and the 2% settling time of 2s.
The poles of plant are -3, —4. Put y=4, r=1. From

(16), we have 2.133¢a,<5.333. Select o,=28, then PID
2
a9= 1.421s +118.58s+23.58‘

step response system

controller results in The

closed-loop poles are —4, —2.2105¢71.004 and zeros are
—4.1481, —4. The overshoot and settling time are (,1363%
and 1,6486s. Therefore, the design is achieved successfully.

Example 2 (First~order controller): Consider a plant
- 30
=074 0. 35755
Design objective: (i) overshoot< 1% (ii) settling time<2s.
The poles of plant are 0, -5, —2. Let =2 and =0.8

From (24), we obtain 2,008¢e,<3.41. When we select

@,=2.8, then the designed first-order controller is
_0 8116 - s , p
as) StR% The closed-loop poles and zero are

-20,~18.74,—2.263441.1727 and —X respectively, the
overshoot and settling time are each (.1610% 1.8540s. So,

we conclude that the design is successfully achieved.

5. Concluding remarks

Subject to a unit feedback structure, a new approach for
reducing the effect of controller’'s zeros has been proposed.
We have considered a PID and first~order controller with
the specified overshoot and settling time. The main idea of
our method was to impose a constraint on the controller
parameters so that the zeros of resulting controller are
distant from the dominant pole of closed-loop system to
the left as far as the given interval. We have employed
the CRA in with the
specifications. As illustrated in examples, we conclude that

order to deal time response

the proposed method works well.
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