• Title/Summary/Keyword: Invariant Manifold

검색결과 125건 처리시간 0.554초

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM

  • Ejaz Sabir Lone;Pankaj Pandey
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.223-234
    • /
    • 2023
  • The main purpose of this paper is to study the lightlike hypersurface (M, $\overline{g}$) of cosymplectic space form $\overline{M}$(c). In this paper, we computed the Gauss and Codazzi formulae of (M, $\overline{g}$) of cosymplectic manifold ($\overline{M}$, g). We showed that we can't obtain screen semi-invariant lightlike hypersurface (SCI-LH) of $\overline{M}$(c) with parallel second fundamental form h, parallel screen distribution and c ≠ 0. We showed that if second fundamental form h and local second fundamental form B are parallel, then (M, $\overline{g}$) is totally geodesic. Finally we showed that if (M, $\overline{g}$) is umbilical, then cosymplectic manifold ($\overline{M}$, g) is flat.

p-EQUIVARIANT SPINC-STRUCTURES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • 대한수학회보
    • /
    • 제40권1호
    • /
    • pp.17-28
    • /
    • 2003
  • Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that ${\sigma}\;:\;X\;{\rightarrow}\;X$ is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold $\Sigma$ as a fixed point set with ${\Sigma\cdot\Sigma}\;{\geq}\;0\;and\;[\Sigma]\;{\neq}\;0\;{\in}\;H_2(X;\mathbb{Z})$. We show that if _X(\Sigma)\;+\;{\Sigma\cdots\Sigma}\;{\neq}\;0$ then the $Spin^{C}$ bundle $\={P}$ is not $\mathbb{Z}_2-equivariant$, where det $\={P}\;=\;L$ is a basic class with $c_1(L)[\Sigma]\;=\;0$.

NULLITY OF THE LEVI-FORM AND THE ASSOCIATED SUBVARIETIES FOR PSEUDO-CONVEX CR STRUCTURES OF HYPERSURFACE TYPE

  • Chung, Kuerak;Han, Chong-Kyu
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.169-178
    • /
    • 2019
  • Let $M^{2n+1}$, $n{\geq}1$, be a smooth manifold with a pseudoconvex integrable CR structure of hypersurface type. We consider a sequence of CR invariant subsets $M={\mathcal{S}}_0{\supset}{\mathcal{S}}_1{\supset}{\cdots}{\supset}{\mathcal{S}}_n$, where $S_q$ is the set of points where the Levi-form has nullity ${\geq}q$. We prove that ${\mathcal{S}}{_q}^{\prime}s$ are locally given as common zero sets of the coefficients $A_j$, $j=0,1,{\ldots},q-1$, of the characteristic polynomial of the Levi-form. Some sufficient conditions for local existence of complex submanifolds are presented in terms of the coefficients $A_j$.

CONFORMAL HEMI-SLANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Vinay Kumar;Rajendra Prasad;Sandeep Kumar Verma
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.205-221
    • /
    • 2023
  • The main goal of the paper is the introduction of the notion of conformal hemi-slant submersions from almost contact metric manifolds onto Riemannian manifolds. It is a generalization of conformal anti-invariant submersions, conformal semi-invariant submersions and conformal slant submersions. Our main focus is conformal hemi-slant submersion from cosymplectic manifolds. We tend also study the integrability of the distributions involved in the definition of the submersions and the geometry of their leaves. Moreover, we get necessary and sufficient conditions for these submersions to be totally geodesic, and provide some representative examples of conformal hemi-slant submersions.

ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS

  • Amina Alem;Bouazza Kacimi;Mustafa Ozkan
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.300-315
    • /
    • 2023
  • In this article, we deal with the biharmonicity of a vector field X viewed as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic maps, and find the relationship between them and biharmonic vector fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we give examples of vector fields which are proper biharmonic maps on the Gödel universe.

HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS

  • Zaili Yan;Tao Zhou
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1607-1620
    • /
    • 2023
  • In this paper, we mainly study the problem of the existence of homogeneous geodesics in sub-Finsler manifolds. Firstly, we obtain a characterization of a homogeneous curve to be a geodesic. Then we show that every compact connected homogeneous sub-Finsler manifold and Carnot group admits at least one homogeneous geodesic through each point. Finally, we study a special class of ℓp-type bi-invariant metrics on compact semi-simple Lie groups. We show that every homogeneous curve in such a metric space is a geodesic. Moreover, we prove that the Alexandrov curvature of the metric space is neither non-positive nor non-negative.

원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구 (Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem)

  • 정옥철;안상일;정대원;김은규;방효충
    • 한국항공우주학회지
    • /
    • 제43권8호
    • /
    • pp.692-698
    • /
    • 2015
  • 본 논문에서는 원형 제한 3체 문제의 불변위상공간을 이용하여 지구-달 또는 행성간의 궤적을 설계하고 해석하는 기법을 소개한다. 2체 문제를 조합하는 고전적인 방식 대신에 원형 제한 3체 문제에 대한 운동방정식, 궤적의 동적 특성, 평형점 주변의 리아프누프 궤도와 불변위상공간의 특성을 기술한다. 원형 제한 3체 문제의 불변위상공간을 이용했을 때, 지구-달 시스템의 궤적설계 방식과 태양-목성 시스템의 경계면에서의 초기조건에 따른 궤적 특성을 수치 시뮬레이션을 통해 확인한다. 본 논문에서 제안한 원형 제한 3체 문제의 불변위상공간을 이용한 궤적설계 기법은 저추력 또는 저에너지를 이용한 달탐사 또는 행성탐사 임무 등에 활용 가능할 것이다.

SYMPLECTICITY OF 4-DIMENSIONAL NIL-MANIFOLDS AND SCALAR CURVATURE

  • Kim, Jong-Su;Yun , Gab-Jin
    • 대한수학회보
    • /
    • 제35권3호
    • /
    • pp.563-570
    • /
    • 1998
  • We makes an explicit description of compact 4-dimensional nilmanifolds as principal torus bundles and show that they are sysmplectic. We discuss some consequences of this and give in particular a Seibebrg-Witten-invariant proof of a Grovmov-Lawson theorem that if a compact 4-dimensional nilmanifold admits a metric of zero scalar curvature, then it is diffeomorphic to 4-tours, $T^4$.

  • PDF