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Z,-EQUIVARIANT SPIN“-STRUCTURES

YoNG SEUNG CHO AND YooN Hi Hong

ABSTRACT. Let X be a closed, oriented, Riemannian 4-manifold
with b2+(X) > 1 and of simple type. Suppose that o : X — X is
an involution preserving orientation with an oriented, connected,
compact 2-dimensional submanifold 3 as a fixed point set with
2-Z>0and [E] #0 € Ho(X;Z). We show that if x(Z)+3X-X #£0
then the Spin® bundle P is not Zg-equivariant, where det P=1Lis
a basic class with ¢1(L)[X] = 0.

1. Introduction

Let X be a closed, oriented Riemannian 4-manifold. Let L be a
complex line bundle over X satisfying ¢;(L) = wo(7T'X) mod 2. Then
there are a principal Spin‘(4)-bundle P — X with det P = L and the
twisted (:t:%)—spinor bundles W™ associated with L. In this paper, we
say that P is a Spin“-structure on X.

Let A(L) be the set of Riemannian connections on L and I'(W™) be
the space of sections of W+. The gauge group G(P) of bundle automor-
phisms on L acts on A(L) x T(W™) by g(A,¢) = (A + g~ 'dg, g2 ) for
all g € G(P) and (A,v) € A(L) x T(W).

For (A,¢) € A(L) x (W) and a real-valued self-dual 2-form § €
Q((R) on X, the perturbed Seiberg-Witten equations are defined by

. {FT +i6 = q(¢)
D_;\?;') = 07
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where D : T(W™*) — T'(W™) is the Dirac operator associated to the
connection A. ¢ : C®°(W*) — Q% (iR) is a quadratic map defined by

q) =v@y — 5l

Let M(ﬁ) be the moduli space, the gauge equivalence classes of all
solutions of the perturbed Seiberg-Witten equations (). For a generic
self-dual 2-form & on X, M(P) is a smooth, compact manifold with
its dimension dim M(P) = 2{e1(D)*[X] — (2x(X) + 3sign(X))}, where
x(X) and sign(X) are the Euler characteristic and the signature of X
respectively. The orientations of the cohomology spaces determines an
orientation of the moduli space.

If dim M(P) is even, say equal to 2d > 0 then the Seiberg-Witten
invariant is defined by SW(P) = [ M(P) pd, the integral of the maximal

power of the Chern class u = ¢;(M(P),) of the circle bundle M(P)y —
M(P) where M(P)y is the framed moduli space.

If dimM(P) is odd or negative then the Seiberg-Witten invariant
SW (P) is defined to be zero. For details, see [16].

In general, there are infinitely many elements ¢, (L) € H?(X;Z) sat-
isfying ¢1(L) = w(TX) mod 2. Each such element induces a Spin°-
structure on X. However there are only finitely many elements in H2(X;
Z) such that their Seiberg-Witten invariants are non-zero. Such an el-
ement in H?(X;Z) is called a basic class. So the set of basic classes is
finite. Furthermore X is said to be of simple type if all basic classes
satisfy c1(L)?[X] = 2x(X) + 3sign(X).

It has been a conjecture in Kahler geometry that complex curves in
compact Kéhler surfaces X should minimize the genus in their respective
homology classes. This conjecture is attributed to Thom [10] for the
case X = CP2. Using the Seiberg-Witten invariants, Kronheimer and
Mrowka [10] and Morgan-Szabd-Taubes {11] proved the Thom conjecture
when the complex curves have non-negative self-intersection numbers.
If X has a basic class, it gives a minimal genus bounds for the embedded
surface so called the adjunction inequality.

THEOREM 1.1 (ADJUNCTION INEQUALITY [10]). Let X be a smoo
-th 4-manifold with b (X) > 1 and a basic class L and let & be an
embedded connected, oriented surface with ¥ - ¥ > 0 and [£] # 0 €
Hs(X;Z). Then we have an inequality

—Xx(Z) > -+ e (D)[Z]].

Ozsvéth and Szabé [13] also had the adjunction inequality for a 4-
manifold X of simple type with b3 (X) > 1 and g¢(¥) >0and - <0



Zp-equivariant Spin©-structures 19

and proved the Thom conjecture for an embedded symplectic surface in
a closed, symplectic 4-manifold.

Suppose that a cyclic group Z, (p is prime) acts on X by orienta-
tion preserving isometry. The induced action of Z, on the orthonormal
frame bundle Pgq (4, commutes with the right action of SO(4) on Pso
Choose an action of Z,, over the principal U(1)-bundle Py associated to
L which is compatible with the Z,-action on X, and commutes with the
canonical right action of U(1) on Py.

If the Z, action on the product Pgq ) x Py, lifts to a Z, action on
the Spin“-structure P then we say that P is Z,-equivariant.

Note that the lifting group on P induced from the Z,, action on P, x
Pgo(4) might have form a larger group. In general, this group acting on
P is not necessary to be Z,,. In particular, when p = 2, we say that the
lifting group on P is of even tvpe if P is Zs-equivariant and is of odd
type if otherwise.

About the Zs-equivariant Spin“-structure, Ruan and Wang [14] show-
ed that if the virtual dimensions of the moduli space M(P) and the
fixed moduli space M(P P)™ are zero and M(P)™ is a smooth manifold
then SW(P) = SW(P)™ mod 2 where M(P)" is the fixed point set of
a Zs action 7 : M(P)* A/l(P)* and SW(P)™ is a Seiberg-Witten
invariants defined from M(P)". We call SW(I:’)T as a fixed Seiberg-
Witten invariant.

Feng [8] showed that if P is Zj-equivariant and b;(X) = 0 and
by (X) > 2 and bj (X/Z,) = b](X) then SW(P) = 0 mod p if k; <
L3 (X)—1) for j =0,1,.... p — 1 where Zf;& k; = indD 4 is the index
of the Dirac operator DA.

In this paper, we consider a Z, action on a closed, connected, ori-
ented Riemannian 4-manifold X with an oriented, connected, compact,
2-dimensional submanifold ¥ as a fixed point set. We consider the ZLy-
equivariant Spin‘-structure P over X for all prime p and the condition
of the fixed point set X.

In Section 2, we prove that if P is a Z,-equivariant Spin®-structure
then we compute the virtual dimension of the 7/-invariant moduli space
M(P) .

In Section 3, let X be a closed. oriented, Riemannian 4-manifold with
b3 (X) > 1. Suppose that o : X — X is an involution preserving orien-
tation with an oriented, connected, compact 2-dimensional submanifold
Y as a fixed point set and ¥ -X > 0 and [3] # 0 € Ha(X; Z). Suppose
that P is a Zo-equivariant Spin“-structure over X and det P = L is a



20 Yong Seung Cho and Yoon Hi Hong

basic class with ¢1(L)[2] = 0. Then we show that the fixed moduli space
M(P)" is not empty.
Furthermore, if X is of simple type, then ¥ satisfies

xZ)+X - X=0.

This means that if X is a closed, oriented, Riemannian 4-manifold with
b3 (X) > 1 and is of simple type and if ¢ : X — X is an involution pre-
serving orientation with an oriented, connected, compact 2-dimensional
submanifold X as a fixed point set with -3 > 0 and [X] # 0 € Hy(X; Z),
then we show that if x(Z)+X-X # 0 then the Spin‘-structure P is not Z,-

equivariant where det P = L is a basic class over X with ¢, (L)[X] = 0.

2. Zp action on the Spin®-bundle and the fixed point set

Let X be a closed, oriented Riemannian 4-manifold. Let L be a
complex line bundle over X satisfying ¢;(L) = w2(TX) mod 2. Then
there are a principal Spin®(4)-bundle P — X with det P = L and the
twisted (&3 )-spinor bundles W* associated with L.

Suppose that there is a Z, action ¢ : X — X preserving orientation
with an oriented, connected, compact 2-dimensional submanifold ¥ as a
fixed point set.

Since Spin€(4) is a 2-fold covering space of SO(4) x U(1), by Bredon
[3] the Z;, action on Pgo(4y X PL can be lifted to an action of some group
A on P which is an extension as follows

(1) 0—Zy—A—7Zy,—0.

If p is odd, prime then A = Zy, = Zy X Z,, and so there is a subgroup of
A which is isomorphic to Zy,. Then we can find a Z,-equivariant Spin®-
structure P on X.

While, when p = 2, we can not always get a Zs-equivariant Spin°-
structure P because exactly the exact sequence (1) is non-trivial and
AN Z4 2z Z2 X Zz.

Assume that there is a Z, action 7 : P — P induced from the Z,
action (o.,det 7) on Pso4) x Pr. For simplicity we choose a metric on
X which is Z,-invariant.

As in [14], for (A,¥) € A(L) x I(WT), we define a Z,-action by
(A, ) = ((det7)* A, (t71)*1) where V(qet ry~a(s) = det 7(V a(det 71
osor)) for all s € (L) and (7~1)*1) = 771 o9poo. Then 7* acts on the
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solution set of the perturbed Seiberg-Witten equations (x). Note that
the self-dual 2-form 6 € Q% (R) in (*) assumed to be invariant under the
Z, action o on X.

For all gauge transformation g € G(P), define a Zy-action 7'g =
TogoT !

Since any two liftings 7 : P — P differ by a gauge transformation,
the induced Z, action of 7 on A(L) x T(W+)/G(P) is independent
of the choice of 7. Let M(P)” be the fixed point set of the Zs-action
™ M(P)* — M(P)* where M(P)* = {[A,¢] € M(P)[y # 0} is
the irreducible moduli space. In this paper, we say M(P)” as the fixed
moduli space.

While, using the Z,, action 7* on A(L)x(W*) and G(P), we consider
a 7-invariant moduli space

_ {7 — invariant irrcducible solutions of the equations(*)}

M(P), =

{7* — invariant gauge transformations}

depending on the choice of the Z,, action 7 : P — P. For details see [14].
Let [A, 4] € M(P)". Then there is a gauge g such that 7*(4,y) =
g*(A, %) and so [A,¢] € M(P), where 7/ =7 0g~ L.
Since [A,¥] € M(P), and (1)*(A4,v) = ((det 7')* A, (') ' oypoo) =
(A,v), we have

(TP (A, ¢) = ((det T")P* A, (') P op o oP)

= ((det 7")"* A, (') P o @) = (A, ).

Thus (7')? = Id on P and so (det7/)? = Id on L. As in [14], denote
7/ = s7 for a unique map s: X — S'.

(7/)? = 1d on P implies that s(o?~'(x))s(c? 2(z))---s(z) =1 € 5!
for all x € X.

If we restrict z € X, then s(o?™1(x))s(c?~%(x)) - s(z) = s(z)? = 1.
Thus s = exp%T’” on the fixed point set ¥, h=10,--- ,p— 1.

Since the involution ¢ : X — X is an orientation preserving isometry
with ¥ as a fixed point set and (7')” = Id on P, det 7’ : L — L acts as
an orientation preserving isometry.

Thus for each point z € 3.

2mmai

det 7’ = exp :Lly > Llzy, m=0,---,p— 1
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By the Lefschetz theorem of Atiyah-Siegal in [15], the dimension of
the 7/-invariant moduli space M(P), is

dim M(P), = ind(D4) + 2ind(D ),
where Dy : T(St ® S) — T(ST®St)™ and D,y : T(WH)™ —
F(W‘)Zp are the Dirac operators. S* are (+1)-spinor bundles of X
with W+ = §* @ L2.
The indices ind(D4) and ind(D,) are averages of the Lefschetz num-
bers L(7', D 4) and L(7', D 4) for each 7/ € Z, such as
_ 1 _ _
ind(Da) = > Zrvez, L, Da) = %ZizlL((T’)k,DA),
ind(D,1) = iET/eZPL(T’,DA) - %zzzlL((T')k,DA).
By Atiyah and Singer [15], the Lefschetz numbers L(7’, D4) and L(7’
D,) are defined by

ams che (ST)ch, (8™ — ST)td(TE ® C)

L(r', D)z = (-1 ; ¥,
(', Da)ls = (-1) TS)chr (A NT & C) [>]
(nn h <W+ W—)td !(TE ® C)
Lir' D _(_qym=e s 5.
(D)l = (1) e
where N is the normal bundle of ¥ in X. For details see [15].
The Lefschetz numbers can be calculated by
(e%eswi;w + 6—;1 6—9N2i—$2 )(691\”';:"2 e‘eN;*T2 )
.- 3 _
L(r',Da)ls = (1= cratIni) (1 = e—m2=0ni) [2],
(,1(L)[ } 19L Onitzo . —OpNni—xTo
62 e 2 e 2
L(r', Da)ls = - sy,

(1= em270n1)(1 — g2 0n7)
where z; are the Chern’s roots and §;, is determined by the Z,-action
det " = expfri on L|s. The angle 0y is determined by the Z,-action
o+ = expfyi on the normal bundle Ny.

THEOREM 2.1. In the above notations, the virtual dimension of the
Zy-invariant moduli space dim M(P) ., 7' = st € Z,, is

dim M(P), = l[dimM(ﬁ) - p—;lx(z)

1 1 1~l~coslfﬂcosk—‘;L 1s1n kGL
+ 550 STy IEDIEE z: i keN ——a(L)[=]],
kfr, k6 kOn
COS——-— sm——cos
and ¥PTT- MV a (L)X =P} %%,
Sl

nz kON
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where kf; and kfy are determined by the action det 7’/ k= expkfri on
L|s and 0% = expkfOni on Ny respectively, k=1,...,p— 1.

Proof. Since the induced Z,-action o, on T X[y, = TY ® Ny, satisfies
o«|lrs = 1d and o.|n, = exp"i;)”—"', n=1,...,p—1, we have fy = 2’;—",
n=1...,p— 1.

Since 77 (A, ) = ((det 7")* A, (7') "' 0 ¢y 0 o), we have

for all 7' € Z,.
Thus we conclude that if det 7/ = exp 2mi(

m
P

) on L|s and o.|ny =

exp —QT;'”, then det 7" = exp ——2"‘;:"]"" on L|s and of = exp ———2";‘“ on Ny,
m=0,...,p—1,n=1,...,p—1, and so kO = g’—’% and kfy = 2—7‘;—".
The Lefschetz numbers can be calculated as follows
L(T’a DA)}Z
B (e%e”m‘ {;ri"‘z e s o *HA\'Z'*-"z )(6 ON '2+<l’2 e *91\'2'*-"2 ) .
- (1 _ p.pﬁ(),\«/)(l _ evxz»em) [ ]
PIEDY X(Z> !
= — L', Da)ls
(cosOn — 1) 2 (7' Dalls
e%m([/)[z]e ’ZL ((’,“\ 1_;"'2 e *‘)Né—-rg ) .
- (1 — em2t08i)(1 — ¢ r2=0n7) =]
, On
it ) COS =~
=~ (e - 2o %)
45111?\‘ 4sin® 7
0L o ON [
Cos Z- cos X sin -
- 2.29\,2 IR X f)cl(L)[Z]
4 sin =5 4 sin =
. HL . 91_ 9\
cos 7= sin 2= cos =~
—i( : Z —c1(L)[X] - —‘?WQ—E'Z)
4 sin = 4sin” =
Then we show that
DIEDY x(%)

L(7'*, D4) = -
(T Da) (coskfxn — 1) 2

. KON

k ik0O 2 COS —(+—
L Da)ly = —¢ = (5 _Tpra(l)E] - 5 5).

2

2sin =% 4sin
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When k = p, we have (7/)? = Id on P and so
L(7", D) + 2L(7"", D4) = L(Id, D4) + 2L(Id, D 4)

= (@ (L)[X] ~ (2(X) + 3sign(X))) = dim M(P).

Thus we conclude that

N 1 ~ -1
dim M(P), = E[dimM(P) - 1—’—2—X(2)
1, —1+cos'“iL—cosm sin ®0L
+52i:} T 2 2-2+22p 18———1 Z—c,(L)[Z]
2
Kor KL cog kO
p—1 CO8 “5= 1 p—18in =5k cos
—2<22 ;_k?; (L)[Z]_sz 1W2 E)}

Since the virtual dimension of the Z,-invariant moduli space M(P)./
should be non-negative integer, we have

kb, k0L kOn
Ep_l cos ;;2 (L )[Z] 1 sin 75 ! Ckogs 2.y
sin —Ji sin 2” m

REMARK 2.2. From Theorem 2.1 we calculate the dimension of the
Z-invariant moduli space M(P),. for all prime p which is dependent
on the Z, actions on L|y by det 7’ and on the normal bundle Ny, by o,
respectively.

3. Applications

If X is a spin 4-manifold with trivial canonical classand o : X — X is
an involution preserving orientation and Pgpin(4y is a principal Spin(4)-
bundle then Pspin4) i8 Zo-equivariant if and only if Z3 acts on X with
only isolated fixed points. Then the dimension of the fixed point set is
zero. And the order of the lifting group on Pspins) is 4 if and only if Z
acts on X with a 2-dimensional compact submanifold as a fixed point
set. See [1] for details.

ProrosITION 3.1. Let X be a closed, oriented, Riemannian 4-mani-
fold with bJ (X) > 1. Suppose that o : X — X is an involution pre-
serving orientation with an oriented, connected, compact 2-dimensional
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submanifold ¥ as a fixed point set and £-¥ > 0 and [X] # 0 € Ha2(X;Z).
Suppose that P is a Zy-equivariant Spin®-structure over X with non-zero
Seiberg-Witten invariants and ¢, (L)[E] = 0. Then the fixed moduli space
M(P)™ is not empty.

Proof. Since L = det P is a basic class over X, M(P) is not empty
and dim M(P) > 0. Since M(P)" is the fixed point set of the Z,, action
™ : M(P)* — M(P)*, we have dim M(P) > dim M(P)".

By using Theorem 1.1 (the adjunction inequality) and the condition
¢1(L)[X] = 0, we conclude that

-(x(E)+X-%) >0
By Theorem 3.8 in {14] there is a disjoint decomposition
M(P)" = Ujgex M(P)sr
indexed by the set K of equivalence classes of maps s : X — S! with
s(o(x))s{x) =1 for all z € X where s ~ s’ if and only if g(o(x))s(z) =
g(z)s'(z) for some map g: X — S* where (s7)? =Id on P and s ~ 1.

As above, for simplicity we let 7/ = s7. Since o, = —Id on Ny and
det 7' =1Id or —Id on L|x, we have 5 = m and 8, = 0 or .

By Theorem 2.1,

1 1

M) - 5554 (e ey (D)[5])

dim M(P),, = %[dim/\/t(ﬁ) - ; :

1
2
0r,
(cos 7)01(L)[2} =0.
Thus we have

dim M(P), — %[dim/\/l(f)) e+

DN —

Since dim M(P) > 0 and —(x(%) 4+ X - £) > 0, we conclude that
dim M(P),. >0
for all [s] € K.

If dim M(P) = 0 then dim M(P)" = 0. By [5] there is a generic self-
dual 2-form § € Q% (R) on X such that M(P)" is a smooth manifold.
Then by Theorem 2.2 in [14], any point in M(P)" is a smooth point
of M(P) and SW(P) = SW(P)" mod 2. Since the Seiberg-Witten
invariant SW(P) is non trivial for the basic class L, M(P)" is not
empty.

If dim M(P) > 0, then dim M(P),» > 0 and so dim M(P)” > 0.
Thus for a generic self-dual 2-form 4, M(P)T is not empty. O
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COROLLARY 3.2. Let X be a smooth, closed, connected, oriented
4-manifold with b3 (X) > 1 and b, (X) = 0. Suppose that there is an
involution o : X — X with a fixed point set, an oriented, connected,
compact 2-dimensional submanifold ¥ with ¢(¥) > 0 and [X] # 0 €
Hy(X;Z) and £ -% > 0. If P is a Zy-equivariant Spin®-structure with
non-zero Seiberg-Witten invariants and c;(L)[Z] = 0 for det P = L then
M(P)™ is not empty and dim M(P) = dim M(P)".

Proof. By Proposition 3.1, M(P)” is not empty. By Theorem 1.1
(the higher type adjunction inequality) in [12], we have

~(x(Z) + - £) > |er(L)[E]] + 2 dim M(P).
Thus for all s7-invariant moduli spaces M(P),, [s] € K, we have

dim M(P), = 5[dim M(P) - S((E) +2- D)

(a)
1 - 1 - ~

> §(dimM(P) + §|cl(L)[E]I + dim M(P)) = dim M(P).

Since dim./}/l(f’)f < dim M(P) and a disjoint decomposition M(P)™ =

Uisjex M(P)s7, we conclude that

(b) dim M(P),, < dim M(P) for all [s] € K.

Equations (a) and (b) imply that flimM(IS)ST = dim M(P) for all [s] €
K and so dim M(P)" = dim M(P). O

COROLLARY 3.3. Let X be a closed, oriented, Riemannian 4-mani-
fold with b3 (X) > 1 and is of simple type. Suppose that o : X — X isan
involution preserving orientation with an oriented, connected, compact
2-dimensional submanifold ¥ as a fixed point set and ¥ -¥ > 0 and
[$] # 0 € Hy(X;Z). Suppose that P is a Zy-equivariant Spin°-structure
over X with non-zero Seiberg-Witten invariants and c¢;(L)[X] = 0. Then
the fixed point set ¥ satisfies x(X)+ X - X = 0.

Proof. By Proposition 3.1, the fixed moduli space M(P)" is not
empty. Since X is of simple type, for the basic class L = det P,
dim M(P) = 0. Thus we conclude that

X(E)+ 3-8 = ey (L)[Z] = 0. 0
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REMARK 3.4. (1) In the same condition with Corollary 3.3, if ¥ does
not satisfy the condition x(X)+ % - # 0, then P is not Zo~equivariant.
(2) We can find many examples satisfying the condition (L)X =0
in Proposition 3.1, Corollaries 3.2 and 3,3. For example, if we consider
a Lagrangian surface ¥ then x(Z) + £ - % = 0. Under the condition of
Theorem 1.1 (the adjunction inequality), we have

O<a(l)E < -(x(X)+%-%) =0,
and so ¢, (L)[X] = 0.

EXAMPLE 3.5. In Section 1 in [7] they constructed a double cover
R, of CP? branched along B where B is a smooth complex curve of
degree 2p in CP2. When p = 3. Ry is a K3 surface and g(B) =10 and
B .- B = 36.

Denote X = Ry and let 7 : Ry — CP? be the projection map. Then
there is a canonical involution o : X — X which is just the covering
map with the fixed point set #='(B) = B. The basic class on X is only
trivial line bundle L = X x C — X. Also the basic class L and the
associated positive spinor bundles W can be written by

dtP=L=K,, W'=K,aII,

where I] — X is a trivial line bundle and K+ is the canonical class of
X.
Thus there is a Zy action on L = X x C and P is a Zo-equivariant
Spinc-structllre over X. 3
Since x(B) + B- B = —18 + 18 = ¢|(L)[B] = 0 and dim M(P) =
dim M(P)” =0, Ry and B satisfy Corollary 3.3.

EXAMPLE 3.6. Let (X,w) be a closed, symplectic 4-manifold with a
symplectic structure w and b3 (X) > 1. Suppose that o : X — X is an
anti-symplectic involution (that is, 0*w = —w) with a fixed point set 3,
an embedded, oriented, connected, compact 2-dimensional submanifold
with [¥] # 0 € Hy(X:;Z) and £ - % > 0. Then ¥ is a Lagrangian surface
and x(¥) + XX =0.

Suppose that P is a Spin‘-structure with non trivial Seiberg-Witten
invariants. Then by Remark 3.4, we have ¢, (L)[Z] = 0.

Since X is of simple type and det P = L is a basic class, we get
dim M(P) = dim M(P)™ = 0 and by [14] SW(P)™ = SW(P) mod 2.

If P = Kx or K% then SW(P) £ 0 mod 2 and so SW(P)" # 0 mod
2 where K x is the canonical class of X.
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