• Title/Summary/Keyword: Interest in mathematics

Search Result 544, Processing Time 0.027 seconds

The Effect of Physical Computing Education to Improve the Convergence Capability of Secondary Mathematics-Science Gifted Students (중등 수학과학 영재를 위한 피지컬컴퓨팅 교육이 융합적 역량 향상에 미치는 영향)

  • Kim, Jihyun;Kim, Taeyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.2
    • /
    • pp.87-98
    • /
    • 2016
  • Our study is composed of Arduino robot assembly, board connecting and collaborative programming learning, and it is to evaluate their effect on improving secondary mathematics-science gifted students' convergence capability. Research results show that interpersonal skills, information-scientific creativity and integrative thinking disposition are improved. Further, by analyzing the relationship between the sub-elements of each thinking element, persistence and imagination for solving problems, interest of scientific information, openness, sense of adventure, a logical attitude, communication, productive skepticism and so on are extracted as important factors in convergence learning. Thus, as the result of our study, we know that gifted students conducted various thinking activities in their learning process to solve the problem, and it can be seen that convergence competencies are also improved significantly.

A Study for Numeracy program Development of the elderly generation (후기성인학습자를 위한 수리문해 프로그램 개발)

  • Lee, Hyeung Ju;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.519-536
    • /
    • 2018
  • This study is intended to develop a numeracy program for late-adult learners. For this study, firstly, characteristics of numeracy were analyzed and based on those characteristics, numeracy learning contents for late-adult learners were selected. Also, teaching and learning materials were developed by linking the mathematics contents selected to experience-based real lives of late-adult learners. When this numeracy program was applied to late-adult learners, it was observed that there was a change in the affective domain like interest at the early stage of learning and that as learning continued, mathematical elaboration occurred by way of mathematical formalization. In conclusion, this study has significance by re-defining arithmetic for late-adults from a perspective of numeracy, based on experience of late-adults, and making a contribution to mathematical elaboration of late-adult learners so non-formal problem-solving processes of lat-adult learners can be justified as elaborate mathematical problem-solving.

Development of Convergence Education Program for Elementary School Gifted Education Based on Mathematics and Science (초등학교 영재교육을 위한 수학·과학 중심의 융합교육 프로그램 개발)

  • Ryu, Sung-Rim;Lee, Jong-Hak;Yoon, Ma-Byong;Kim, Hak-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.217-228
    • /
    • 2018
  • The purpose of this study is to develop STEAM program for gifted education by combining educational contents of humanities, arts, engineering, technology, and design into various subjects, focusing on mathematics-science curriculum of elementary school. The achievement standards and curriculum contents of elementary mathematics-science curriculum were analyzed while considering 2015 revised national curriculum. And then, a 16 class-hour convergence education program consisting of 3-hour block time was developed by applying the STEAM model with 4 steps. The validity of the program developed through this process was verified, and four educational experts evaluate whether the program can be applied to the elementary school. Based on the evaluation results, the convergence education program was finalized. As a result of implementing the gifted education program for mathematics-science, students achieved the objectives and values of convergence education such as creative design, self-directed participation, cooperative learning, and interest in class activities (game, making). If this convergence education program is applied to regular class, creative experiential class, or class for gifted children, students can promote their scientific creativity, artistic sensitivity, design sence, and so on.

A NUMBER SYSTEM IN ℝn

  • Jeong, Eui-Chai
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.945-955
    • /
    • 2004
  • In this paper, we establish a number system in $R^n$ which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on $L^2$( $R^n$). Number systems in $R^n$ are also of independent interest [9]. We study radix-representations of $\chi$ $\in$ $R^n$: $\chi$:$\alpha$$_{ι}$ $\alpha$$_{ι-1}$$\alpha$$_1$$\alpha$$_{0}$$\alpha$$_{-1}$ $\alpha$$_{-2}$ … as $\chi$= $M^{ι}$$\alpha$$_{ι}$ $\alpha$+…M$\alpha$$_1$$\alpha$$_{0}$$M^{-1}$ $\alpha$$_{-1}$$M^{-2}$ $\alpha$$_{-2}$ +… where each $\alpha$$_{k}$ $\in$ D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.

The Effect of the Belief Systems on the Problem Solving Performance of the Middle School Students (중학생의 신념체계가 수학적 문제해결 수행에 미치는 영향)

  • Kwon Se Hwa;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.109-119
    • /
    • 1992
  • The primary purpose of the present study is to provide the sources to improve the mathematical problem solving performance by analyzing the effects of the belief systems and the misconceptions of the middle school students in solving the problems. To attain the purpose of this study, the reserch is designed to find out the belief systems of the middle school students in solving the mathematical problems, to analyze the effects of the belief systems and the attitude on the process of the problem solving, and to identify the misconceptions which are observed in the problem solving. The sample of 295 students (boys 145, girls 150) was drawn out of 9th grade students from three middle schools selected in the Kangdong district of Seoul. Three kinds of tests were administered in the present study: the tests to investigate (1) the belief systems, (2) the mathematical problem solving performance, and (3) the attitude in solving mathematical problems. The frequencies of each of the test items on belief systems and attitude, and the scores on the problem solving performance test were collected for statistical analyses. The protocals written by all subjects on the paper sheets to investigate the misconceptions were analyzed. The statistical analysis has been tabulated on the scale of 100. On the analysis of written protocals, misconception patterns has been identified. The conclusions drawn from the results obtained in the present study are as follows; First, the belief systems in solving problems is splited almost equally, 52.95% students with the belief vs 47.05% students with lack of the belief in their efforts to tackle the problems. Almost half of them lose their belief in solving the problems as soon as they given. Therefore, it is suggested that they should be motivated with the mathematical problems derived from the daily life which drew their interests, and the individual difference should be taken into account in teaching mathematical problem solving. Second. the students who readily approach the problems are full of confidence. About 56% students of all subjects told that they enjoyed them and studied hard, while about 26% students answered that they studied bard because of the importance of the mathematics. In total, 81.5% students built their confidence by studying hard. Meanwhile, the students who are poor in mathematics are lack of belief. Among are the students accounting for 59.4% who didn't remember how to solve the problems and 21.4% lost their interest in mathematics because of lack of belief. Consequently, the internal factor accounts for 80.8%. Thus, this suggests both of the cognitive and the affective objectives should be emphasized to help them build the belief on mathematical problem solving. Third, the effects of the belief systems in problem solving ability show that the students with high belief demonstrate higher ability despite the lack of the memory of the problem solving than the students who depend upon their memory. This suggests that we develop the mathematical problems which require the diverse problem solving strategies rather than depend upon the simple memory. Fourth, the analysis of the misconceptions shows that the students tend to depend upon the formula or technical computation rather than to approach the problems with efforts to fully understand them This tendency was generally observed in the processes of the problem solving. In conclusion, the students should be taught to clearly understand the mathematical concepts and the problems requiring the diverse strategies should be developed to improve the mathematical abilities.

  • PDF

A Study on the Development of Teaching Materials about Utilizing Counterexmples Focusing on Proposition in High School (고등학교 명제 단원에서 반례 활용에 관한 교수·학습 자료 개발 연구)

  • Oh, Se Hyun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.30 no.3
    • /
    • pp.393-418
    • /
    • 2016
  • Theory and fundamentals of mathematics consist mostly of proposition form. Activities by research of the proposition which leads to determine the true or false, justify the true propositions and refute with counterexample improve logical reasoning skills of students in emphases on mathematics education. Also, utilizing of counterexamples in school mathematics combines mathematical knowledge through the process of finding a counterexample, help the concept study and increase the critical thinking. These effects have been found through previous research. But many studies say that the learners have difficulty in generating counterexamples for false propositions and materials have not been developed a lot for the counterexample utilizing that can be applied in schools. So, this study analyzed the current textbook and examined the use of counterexamples and developed educational materials for counterexamples that can be applied at schools. That materials consisted of making true & false propositions and students was divided into three groups of academic achievement level. And then this study looked at the change of the students' thinking after counterexample classes. As a study result, in all three groups was showed a positive change in the cognitive domain and affective domain. Especially, in top-level group was mainly showed a positive change in the cognitive domain, in upper-middle group was mainly showed in the cognitive and the affective domain, in the sub-group was mainly found a positive change in the affective domain. Also in this study shows that the class that makes true or false propositions in education of utilizing counterexample, made students understand a given proposition, pay attention to easily overlooked condition, carefully observe symbol sign and change thinking of cognitive domain helping concept learning regardless of academic achievement levels of learners. Also, that class gave positive affect to affective domain that increase interest in the proposition and gain confidence about proposition.

An intelligent monitoring of greenhouse using wireless sensor networks

  • Touhami, Achouak;Benahmed, Khelifa;Parra, Lorena;Bounaama, Fateh;Lloret, Jaime
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.117-134
    • /
    • 2020
  • Over recent years, the interest for vegetables and fruits in all seasons and places has much increased, from where diverse countries have directed to the commercial production in greenhouse. In this article, we propose an algorithm based on wireless sensor network technologies that monitor the microclimate inside a greenhouse and linear equations model for optimization plant production and material cost. Moreover, we also suggest a novel design of an intelligent greenhouse. We validate our algorithms with simulations on a benchmark based on experimental data made at lNRA of Montfavet in France. Finally, we calculate the statistical estimators RMSE, TSSE, MAPE, EF and R2. The results obtained are promising, which shows the efficiency of our proposed system.

Analysis of Elementary and Secondary School Teachers' Recognition about Engineering Education in Elementary and Secondary School (초.중등학교 교사의 초.중등 공학교육에 대한 인식 분석)

  • Kim, Young Min;Huh, Hye Yeon;Lee, Chang Hoon;Kim, Ki Soo
    • Journal of Engineering Education Research
    • /
    • v.16 no.5
    • /
    • pp.9-17
    • /
    • 2013
  • The purpose of this study is to analyze elementary and secondary school teachers' recognition about engineering education in elementary and secondary school. For this, we surveyed elementary and secondary school teachers. The result of this study is as follow. First, most teachers perceived that engineering positively affect national competitiveness and development. They also found that engineering education helps student to select natural science and engineering field career. Moreover, they perceived that engineering contents are not applied in elementary and secondary schools curriculums, hence it does not stimulate interest in engineering. Therefore, they perceived that if engineering education contents are systematically applied in formal curriculum, it will have a positive effect on current engineering education. Second, most teachers perceived that roles of engineering education are to make students learn creative design and problem solving process and inform about the engineering field career. They perceived that the best grade to start engineering education is 4~6 grade in elementary school and the best way to apply engineering education is through distributing engineering education contents to related subjects. They also perceived that technology subject has the most relation to engineering education and science subjects; mathematics subject follow after.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Analysis of the Types of Fractal Dimension Appeared in Fashion (패션에 나타난 프랙탈 디멘션의 유형분석)

  • Song, Arum;Kan, Hosup
    • Journal of Fashion Business
    • /
    • v.22 no.1
    • /
    • pp.135-147
    • /
    • 2018
  • Since the 20th century, there has been a growing interest in the new concept of fractals, a combination of mathematics and art, and the attempt to study the creative spatial aspects of the concept is being made. The purpose of this research is to examine artistic characteristics of fractal dimension and then analyze the types of fractal dimensions expressed in the fashion. Previous literature on fractals and dimension, and visual data on art and fashion collected over the Internet were used for analysis. Fractal dimension refers to the spatial concept of structural dimension of geometrical self-similarity. An analysis of the types of fractals seen in fashion revealed spatial expansion, the repetition in continual figures, superposition accordant to different sizes, and shades of different shapes. The aesthetic characteristics of fractal dimension appearing in fashions were examined based on analyses of fractal dimension types; the inherent characteristics of self-similarity, superimposition, and atypicality were found. Results obtained from this study are expected to be used as basic materials for the application of the design of fractal dimension into various perspectives of fashion.