Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.1.117

An intelligent monitoring of greenhouse using wireless sensor networks  

Touhami, Achouak (Laboratory of Energetic in arid zones, Department of Electrical Engineering, Faculty of Technology, Tahri Mohammed University)
Benahmed, Khelifa (Department of mathematics and computer science, Faculty of Exact Sciences, Tahri Mohammed University)
Parra, Lorena (Instituto de Investigacion para la Gestion Integrada de Zonas Costeras (IGIC), Universidad Politecnica de Valencia)
Bounaama, Fateh (Laboratory of Energetic in arid zones, Department of Electrical Engineering, Faculty of Technology, Tahri Mohammed University)
Lloret, Jaime (Instituto de Investigacion para la Gestion Integrada de Zonas Costeras (IGIC), Universidad Politecnica de Valencia)
Publication Information
Smart Structures and Systems / v.26, no.1, 2020 , pp. 117-134 More about this Journal
Abstract
Over recent years, the interest for vegetables and fruits in all seasons and places has much increased, from where diverse countries have directed to the commercial production in greenhouse. In this article, we propose an algorithm based on wireless sensor network technologies that monitor the microclimate inside a greenhouse and linear equations model for optimization plant production and material cost. Moreover, we also suggest a novel design of an intelligent greenhouse. We validate our algorithms with simulations on a benchmark based on experimental data made at lNRA of Montfavet in France. Finally, we calculate the statistical estimators RMSE, TSSE, MAPE, EF and R2. The results obtained are promising, which shows the efficiency of our proposed system.
Keywords
algorithms; linear equations mode; wireless sensor networks; actuators; intelligent; greenhouse;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ali, Q., Khan, M.T.I. and Khan, M.N.I. (2017), "Impact of energy efficiency improvement on greenhouse gas in off-season tomato farming: Evidence from Punjab, Pakistan", Adv. Energy Res., Int. J., 5 (3), 207-217. https://doi.org/10.12989/eri.2017.5.3.207
2 Ali, R.B., Bouadila, S. and Mami, A. (2018), "Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated", Appl. Therm., 141, 798-810. https://doi.org/10.1016/j.applthermaleng.2018.06.014   DOI
3 Asadollahfardi, A., Heidarzadeh, N., Mosalli, A. and Sekhavati, A. (2018), "Optimization of water quality monitoring stations using genetic algorithm, a case study, Sefid-Rud River, Iran", Adv. Envron. Res., Int. J., 7(2), 87-107. https://dx.doi.org/10.12989/aer.2018.7.2.087
4 Ataei, A., Hemmatabady, H. and Nobakht, S.Y. (2016), "Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses", Adv. Energy Res., Int. J., 4(1), 87-106. http://dx.doi.org/10.12989/eri.2016.4.1.087   DOI
5 Achouak, T., Khelifa, B., Garcia, L., Parra, L., Lloret, J. and Fateh, B. (2018), "Sensor network proposal for greenhouse automation placed at the south of Algeria", Netw. Protoc. Algorithms, 14 (4), 53-69, https://doi.org/10.5296/npa.v10i4.14155
6 Draoui, B. (1994), "Characteristic and analysis of the thermohydric behaviour of a horticultural greenhouse", Ph.D. Dissertation, University of Nice-Sophia Antipolis, France.
7 Canadas, J., Sanchez-Molina, J.A., Rodriguez, F. and del Aguila, I.M. (2017), "Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes", Inf. Process. Agr., 4(1), 50-63. http://dx.doi.org/10.1016/j.inpa.2016.12.002   DOI
8 da Silva, L.M., Junior, E.H., Carneiro, K.J.P., de Matos, J.M., de Vieira, A.P.A.M.C. and da Silva Barreto, R. (2018), "Tellus - greenhouse irrigation automation system", IEEE Symposium on Computers and Communications (ISCC), pp. 1239-1242, Natal, Brazil, November. https://dx.dog.org/10.1109/ISCC.2018.8538494
9 Dondapati, P.P and Rajulu, K.G. (2012), "An automated multi sensored green house management", Int. J. Technol. Expl. Learning (IJTEL), 1(1), 21-24.
10 Salmabadi, H., Sarram, M.A. and Adibnia, F. (2015), "An Improvement on leach protocol (ez-leach)", Proceedings of the 2nd International Conference on Knowledge-Based Engineering and Innovation, 956-960, Tahran, Iran, November. https://dx.doi.org/10.1109/KBEI.2015.7436173
11 Singh, M.C., Singh, J.P. and Singh, K.G. (2018), "Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media", Comput. Electron. Agr., 154, 227-238. https://doi.org/10.1016/j.compag.2018.08.044   DOI
12 Somov, A., Shadrin, D., Nikitin, A., Matveev, S., Oseledets, I., Hrinchuk, O. and Fastovets, I. (2018), "Pervasive agriculture: IoT-enabled greenhouse for plant growth control", IEEE Pervas. Comput., 17, 65-75. http://dx.doi.org 10.1109/MPRV.2018.2873849   DOI
13 van Beveren, P.J.M. Bontsema, J., van Straten, G. and van Henten, E.J. (2019), "Optimal utilization of a boiler, combined heat and power installation, and heat buffers in horticultural greenhouses", Comput. Electron. Agr., 162, 1035-1048. https://doi.org/10.1016/j.compag.2019.05.040   DOI
14 Sri Jahnavi, V. and Ahamed, S.F. (2015), "Smart wireless sensor network for automated greenhouse", IETE J. Res., 61(2), 180-185. https://doi.org/10.1080/03772063.2014.999834   DOI
15 Taki, M., Ajabshirchi, Y., Ranjbar, S.F., Rohani, A. and Matloobi, M. (2016), "Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure", Inf. Process. Agr., 3(3), 157-174. http://dx.doi.org/10.1016/j.inpa   DOI
16 Tap, F. (2000), "Economics-based optimal control of greenhouse tomato crop production", Ph.D. Dissertation, Wageningen University, The Netherlands.
17 van Henten, E.J. (1994), "Greenhouse climate management: an optimal control approach", Ph.D. Dissertation, Wageningen University, The Netherlands.
18 Ramadhan, A.J. (2016), "Automatically maintain climatic conditions inside agricultural greenhouses", J. Eng., 22(11), 83-100.
19 Fezari, M., Khati, A. and Boumaza, M.S. (2011), "Implementation of wireless sensors network for automatic greenhouse monitoring", 2011 International Conference on Communications, Computing and Control Applications (CCCA), Hammamet, Tunisia, September. https://dx.doi.org/10.1109/CCCA.2011.6031440
20 Enokela, A.J. and Othoigbe, T.O. (2015), "An automated greenhouse control system using Arduino prototyping platform", Aust. J. Eng. Res., 1-13.
21 Heinzelman, W., Chandrakasan, A. and Balakrishnan, H. (2000), "Energy-efficient communication protocol for wireless microsensor networks", Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, pp. 1-10, Manui, USA, August. https://doi.org/10.1109/HICSS.2000.926982
22 Heinzelman, W., Chandrakasan, A. and Balakrishnan, H. (2002), "An application specific protocol architecture for wireless microsensor networks", IEEE T. Wirel. Commun., 1(4), 660-667. https://dx.doi.org/10.1109/TWC.2002.804190   DOI
23 Liu, Y. and Bi, C. (2017), "The design of greenhouse monitoring system based on zigbee WSNs", Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), pp. 430-433, Guangzhou, China, August. https://doi.org/10.1109/CSE-EUC.2017.268
24 Kirk, D.E. (1998), Optimal Control Theory. An Introduction, Dover Publications, Inc., New York, USA.
25 Kochhar, A. and Kumar, N. (2019), "Wireless sensor networks for greenhouses: an end-to-end review", Comput. Electron. Agr., 163, 104877. https://doi.org/10.1016/j.compag.2019.104877   DOI
26 Kolokotsa, D., Saridakis, G., Dalamagkidis, K., Dolianitis, S. and Kaliakatsos, I. (2010), "Development of an intelligent indoor environment and energy management system for greenhouses", Energy Convers. Manag., 51(1), 155-168. http://dx.doi.org/10.1016/j.enconman.2009.09.007   DOI
27 Xu, J., Dai, F., Xu, Y., Yao, C. and Li, C. (2019), "Wireless power supply technology for uniform magnetic field of intelligent greenhouse sensors". Comput. Electron. Agr., 156, 203-208. https://dx.doi.org/10.1016/j.compag.2018.11.014   DOI
28 Vatari, S., Bakshi, A. amd Thakur, T. (2016), "Green house by using iot and cloud computing", Proceedings of IEEE International Conference on Recent Trends in Electronics Information Communication Technology, pp. 246-250, Bangalore, India, January. https://doi.org/10.1109/RTEICT.2016.7807821
29 Wan, P., Toudeshki, A., Tan, H. and Ehsani, R. (2018), "A methodology for fresh tomato maturity detection using computer vision", Comput. Electron. Agr., 146, 43-50. https://dx.doi.org/10.1016/j.compag.2018.01.011   DOI
30 Woli Ullah, M., Mortuza, M.G., Kabir, M.H., Ahmed, Z.U., Dey Supta, S.K., Das, P. and Hossain, S.M.D. (2018), "Internet of things based smart greenhouse: remote monitoring and automatic control", Proceedings of Joint International Conference on Energy, Ecology and Environment (ICEEE 2018) and International Conference on Electric and Intelligent Vehicles (ICEIV 2018), pp. 1-6, Melbourne, Australia, November.
31 Yan-fang, S., Jian-guo, S. and Yu-qian, X. (2015), "Design and application of distributed intelligent greenhouse computerized system", Proceedings of the 7th International Conference on Measuring Technology and Mechatronics Automation, pp. 331-334, Nanchang, China, September. https://doi/org/10.1109/ICMTMA.2015.85
32 Zarifneshat, S., Rohani, A., Ghassemzadeh, H.R., Sadeghi, M., Ahmadi, E. and Zarifneshat, M. (2012), "Predictions of apple bruise volume using artificial neural network", Comput. Electron. Agr., 82, 75-86. https://doi.org/10.1016/j.compag.2011.12.015   DOI
33 Mohammad, I. (2018), "A Survey on leach protocol and its enhanced version", Int. J. Comput. Appl., 182(13), 26-33. https://dx.doi.org/10.5120/ijca2018917767   DOI
34 Lopez-Cruz, I.R., Fitz-Rodriguez, E., Torres-Monsivais, J.C., Trejo-Zuniga, E.C., Ruiz-Garcia, A. and Ramirez-Arias, A. (2014), "Control strategies of greenhouse climate for vegetables production", Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 401-421. https://dx.doi.org/10.1007/978-3-319-03880-3_14
35 Ma, D.D., Carpenter, N., Maki, H., Rehman, T.U., Tuinstra, M.R. and Jin, J. (2019a), "Greenhouse environment modeling and simulation for microclimate control", Comput. Electron. Agr., 162, 134-142. https://dx.doi.org/10.1016/j.compag.2019.04.013   DOI
36 Ma, D.D., Carpenter, N., Amatya, S., Maki, H., Wang, L., Zhang, L., Neeno, S., Tuinstra, M.R. and Jin, J. (2019b), "Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping", Comput. Electron. Agr., 166, 104979. https://dx.doi.org/10.1016/j.compag.2019.104979   DOI
37 Maurya, P. and Kaur, A. (2016), "A survey on descendants of leach protocol ", Int. J. Info. Eng. Electron. Bus., 2, 46-58. https//dx.doi.org/10.5815/ijieeb.2016.02.06   DOI
38 Ministry of Agriculture and Rural Development: Technical Institute of Vegetable and Industrial Crops (2015), Greenhouse tomato growing, Algeria.
39 Ota, T., Iwasaki, Y., Nakano, A., Kuribara H. and Higashide, H. (2019), "Development of yield and harvesting time monitoring system for tomato greenhouse production", Eng. Agr. Envr. Food, 12 (1), 40-47. https://doi.org/10.1016/j.eaef.2018.09.003
40 Park, D.H., Kang, B.J., Cho, K.R., Shin, C.S., Cho, S.E., Park, J.W. and Yang, W.M. (2011), "A study on greenhouse automatic control system based on wireless sensor network", Wirel. Pers. Commun., 56, 117-130. https://dx.doi.org/10.1007/s11277-009-9881-2   DOI