• 제목/요약/키워드: Integral Operator

검색결과 270건 처리시간 0.022초

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

ON CERTAIN GENERALIZED q-INTEGRAL OPERATORS OF ANALYTIC FUNCTIONS

  • PUROHIT, SUNIL DUTT;SELVAKUMARAN, KUPPATHAI APPASAMY
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1805-1818
    • /
    • 2015
  • In this article, we first consider a linear multiplier fractional q-differintegral operator and then use it to define new subclasses of p-valent analytic functions in the open unit disk U. An attempt has also been made to obtain two new q-integral operators and study their sufficient conditions on some classes of analytic functions. We also point out that the operators and classes presented here, being of general character, are easily reducible to yield many diverse new and known operators and function classes.

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

Integral Hellmann-Feynman Theorem에 의한 Polarizability의 평가 (Calculations of Polarizabilities by Integral Hellmann-Feynman Theorem)

  • 김호징;조웅인
    • 대한화학회지
    • /
    • 제14권1호
    • /
    • pp.127-131
    • /
    • 1970
  • The variational approach for the direct evaluation of the energy difference ${\Delta}$E is studied. The method is based on the differential equation corresponding to the integral Hellmann-Feynman formula. The ${\Delta}$E is given by the expectation value of the Hermitian operator which does not involve the 1/$r_{ij}$ term. Because of its variational nature of the method, the coupling problem of the differential equations which are encountered in perturbation treatment does not occur. The method is applied to the evaluation of the electric polarizabilities of the Helium isoelectronic series atoms. The result is in good agreement with the experiment. The method is compared with the recent works of Karplus et al.

  • PDF

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.

Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel

  • Rahman, Gauhar;Nisar, Kottakkaran Sooppy;Choi, Junesang;Mubeen, Shahid;Arshad, Muhammad
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.125-134
    • /
    • 2019
  • Since the Mittag-Leffler function was introduced in 1903, a variety of extensions and generalizations with diverse applications have been presented and investigated. In this paper, we aim to introduce some presumably new and remarkably different extensions of the Mittag-Leffler function, and use these to present the pathway fractional integral formulas. We point out relevant connections of some particular cases of our main results with known results.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

분자의 사중극자모멘트의 계산 (제1보). 연산자법에 의한 사중극자모멘트행렬요소의 계산 (Calculation of the Molecular Quadrupole Moments (I). Calculation for the Quadrupole Moment Matrix Elements by Operator Technique)

  • 안상운;고정수
    • 대한화학회지
    • /
    • 제23권5호
    • /
    • pp.296-306
    • /
    • 1979
  • 연산자법을 사중극자모멘트행렬요소를 계산하는데 응용하였다. Spherical harmonics의 전개방법과 사중극자모멘트행렬요소를 Mulliken의 overlap integral 로 전환시키는 방법을 사용하여 Slater 궤도함수쌍에 대한 사중극자모멘트행렬요소이 기본식을 유도하였다. 두 방법에 의하여 계산한 사중극자모멘트행렬요소의 값이 일치하였으며 바닥상태의 HCl 분자에 대하여 계산한 사중극자모멘트의 값이 Nesbet의 값과 일치하였다.

  • PDF

DEGENERATE VOLTERRA EQUATIONS IN BANACH SPACES

  • Favini, Angelo;Tanabe, Hiroki
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.915-927
    • /
    • 2000
  • This paper is concerned with degenerate Volterra equations Mu(t) + ∫(sub)0(sup)t k(t-s) Lu(s)ds = f(t) in Banach spaces both in the hyperbolic case, and the parabolic one. The key assumption is played by the representation of the underlying space X as a direct sum X = N(T) + R(T), where T is the bounded linear operator T = ML(sup)-1. Hyperbolicity means that the part T of T in R(T) is an abstract potential operator, i.e., -T(sup)-1 generates a C(sub)0-semigroup, and parabolicity means that -T(sup)-1 generates an analytic semigroup. A maximal regularity result is obtained for parabolic equations. We will also investigate the cases where the kernel k($.$) is degenerated or singular at t=0 using the results of Pruss[8] on analytic resolvents. Finally, we consider the case where $\lambda$ is a pole for ($\lambda$L + M)(sup)-1.

  • PDF