Browse > Article
http://dx.doi.org/10.5666/KMJ.2019.59.1.125

Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel  

Rahman, Gauhar (Department of Mathematics, International Islamic University)
Nisar, Kottakkaran Sooppy (Department of Mathematics, College of Arts and Science-Wadi Al dawser, 11991, Prince Sattam bin Abdulaziz University)
Choi, Junesang (Department of Mathematics, Dongguk University)
Mubeen, Shahid (Department of Mathematics, University of Sargodha)
Arshad, Muhammad (Department of Mathematics, International Islamic University)
Publication Information
Kyungpook Mathematical Journal / v.59, no.1, 2019 , pp. 125-134 More about this Journal
Abstract
Since the Mittag-Leffler function was introduced in 1903, a variety of extensions and generalizations with diverse applications have been presented and investigated. In this paper, we aim to introduce some presumably new and remarkably different extensions of the Mittag-Leffler function, and use these to present the pathway fractional integral formulas. We point out relevant connections of some particular cases of our main results with known results.
Keywords
gamma function; beta function; extended Mittag-Leffler functions; pathway integral operator;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics(Udine, 1996), 223-276, CISM Courses and Lect., 378, Springer, Vienna, 1997.
2 R. Gorenflo, F. Mainardi and H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), 195-202, VSP, Utrecht, 1998.
3 R. Hilfer and H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct., 17(2006), 637-652.   DOI
4 J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30(7)(2016), 1931-1939.   DOI
5 A. A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms Spec. Funct., 4(1996), 355-370.   DOI
6 A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
7 F. Mainardi, On some properties of the Mittag-Leffler function, $E_{\alpha}(-t^{\alpha})$, completely monotone for t > 0 with 0 < ${\alpha}$ < 1, Discrete Contin. Dyn. Syst. Ser. B, 19(7)(2014), 2267-2278.   DOI
8 A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396(2005), 317-328.   DOI
9 A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Phys. A, 375(2007), 110-122.   DOI
10 A. M. Mathai and H. J. Haubold, On generalized distributions and pathways, Phys. Lett. A, 372(2008), 2109-2113.   DOI
11 G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137(1903), 554-558.
12 S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12(2009), 237-252.
13 K. S. Nisar, A. F. Eata, M. Al-Dhaifallah and J. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution, Adv. Difference Equ., (2016), Paper No. 304, 17 pp.
14 K. S. Nisar, S. D. Purohit and S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., 28(2016), 167-171.   DOI
15 M. A. Ozarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., (2014), 2014:85, 10 pp.   DOI
16 I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999.
17 T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
18 S. D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., 5(2013), 639-651.   DOI
19 M. Saigo and A. A. Kilbas, On Mittag-Leffler type function and applications, Integral Transforms Spec. Funct., 7(1998), 97-112.   DOI
20 T. O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal., 4(2009), 21-30.
21 T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3(5)(2012), 1-13.   DOI
22 H. J. Seybold and R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8(2005), 127-139.
23 A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2007), 797-811.   DOI
24 H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
25 H. M. Srivastava, A note on the integral representation for the product of two generalized Rice polynomials, Collect. Math., 24(1973), 117-121.
26 H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
27 H. M. Srivastava and C. M. Joshi, Integral representation for the product of a class of generalized hypergeometric polynomials, Acad. Roy. Belg. Bull. Cl. Sci. (5), 60(1974), 919-926.
28 H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211(1)(2009), 198-210.   DOI
29 V. V. Uchaikin, Fractional derivatives for physicists and engineers. Volume I. Background and Theory, Volume II. Applications, Nonlinear Physical Science, Springer-Verlag, Berlin-Heidelberg, 2013.
30 A. Wiman, Uber den fundamentalsatz in der teorie der funktionen $E_{\alpha}(x)$, Acta Math., 29(1905), 191-201.   DOI
31 H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of one and two variables with applications, South Asian Publishers, New Delhi and Madras, 1982.
32 P. Agarwal and J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc., 53(1)(2016), 181-193.   DOI
33 D. Baleanu and P. Agarwal, A composition formula of the pathway integral transform operator, Note Mat., 34(2014), 145-155.
34 D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus. Models and numerical methods, Series on Complexity, Nonlinearity and Chaos 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
35 M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602.   DOI
36 J. Choi and P. Agarwal, Certain inequalities involving pathway fractional integral operators, Kyungpook Math. J., 56(2016), 1161-1168.   DOI
37 M. M. Dzrbasjan, Integral transforms and representations of functions in the complex domain, Nauka, Moscow, (in Russian), 1966.
38 R. Gorenflo, A. A. Kilbas and S. V. Rogosin, On the generalized Mittag-Leffler type functions, Integral Transforms Spec. Funct., 7(1998), 215-224.   DOI
39 R. Gorenflo, Y. Luchko and F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118(2000), 175-191.   DOI