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ON CERTAIN GENERALIZED q-INTEGRAL OPERATORS OF

ANALYTIC FUNCTIONS

Sunil Dutt Purohit and Kuppathai Appasamy Selvakumaran

Abstract. In this article, we first consider a linear multiplier fractional
q-differintegral operator and then use it to define new subclasses of p-
valent analytic functions in the open unit disk U . An attempt has also
been made to obtain two new q-integral operators and study their suffi-
cient conditions on some classes of analytic functions. We also point out
that the operators and classes presented here, being of general character,
are easily reducible to yield many diverse new and known operators and
function classes.

1. Introduction and preliminaries

Recently, S. D. Purohit and R. K. Raina [18], [19], [20] and [21] have used the
fractional q-calculus operators in investigating certain subclasses of functions
which are analytic in the open unit disk U . S. D. Purohit [17] also studied
similar work and considered new classes of multivalently analytic functions
in the open unit disk. The aim of this paper is to consider a linear multiplier
fractional q-differintegral operator and to define certain new subclasses of func-
tions which are p-valent and analytic in the open unit disk. Among the results
derived include, two new q-integral operators and their sufficient condition in-
equalities for the subclasses defined and introduced below. Special cases of the
main results are also mentioned.

Let Ap denote the class of functions f(z) of the form

(1.1) f(z) = zp +

∞
∑

n=p+1

anz
n, (p ∈ N = {1, 2, 3, . . .}),

which are analytic and p-valent in the open unit disk U = {z ∈ C : |z| < 1}.
A function f ∈ Ap is said to be p-valently starlike of order α (0 ≤ α < p) if
and only if

ℜ

{

zf ′(z)

f(z)

}

> α, (z ∈ U),
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where the symbol ℜ{f(z)} denotes the real part of the function f(z). We
denote by S∗

p (α) the class of all such functions. On the other hand, a function
f ∈ Ap is said to be in the class Cp(α) of p-valently convex of order α (0 ≤ α <

p) if and only if

ℜ

{

1 +
zf ′′(z)

f ′(z)

}

> α, (z ∈ U).

Note that S∗

p (0) = S∗

p and Cp(0) = Cp are, respectively, the classes of p-
valently starlike, and p-valently convex functions in U . Also, we note that
S∗

1 (0) = S∗ and C1(0) = C are, respectively, the usual classes of starlike and
convex functions in U . A function f ∈ Ap is said to be in the class Sp(b, α) of
p-valently starlike of complex order b (b ∈ C − {0}) and type α (0 ≤ α < p) if
it satisfies

ℜ

{

p+
1

b

(

zf ′(z)

f(z)
− p

)}

> α, (z ∈ U).

Furthermore, a function f ∈ Ap is said to be in the class Cp(b, α) of p-valently
convex of complex order b (b ∈ C− {0}) and type α (0 ≤ α < p) if it satisfies

ℜ

{

p+
1

b

zf ′′(z)

f ′(z)

}

> α, (z ∈ U).

Note that Sp(b, 0) = S∗

p (b), the class of starlike functions of complex order
b (b ∈ C − {0}) and Cp(b, 0) = Cp(b), the class of convex functions of complex
order b (b ∈ C − {0}). The class S∗

p (b) was studied by M. A. Nasr and M. K.
Aouf [14], while the class Cp(b) was considered earlier by P. Wiatrowski [24].

For the convenience of the reader, we now give some basic definitions and
related details of q-calculus which are used in the sequel:

For any complex number α the q-shifted factorials are defined as

(1.2) (α; q)0 = 1, (α; q)n =
n−1
∏

k=0

(1− αqk), n ∈ N,

and in terms of the basic analogue of the gamma function

(qα; q)n =
Γq(α+ n)(1− q)n

Γq(α)
, (n > 0),

where the q-gamma function is defined by

Γq(x) =
(q, q)∞(1− q)1−x

(qx; q)∞
, (0 < q < 1).

If |q| < 1, the definition (1.2) remains meaningful for n = ∞ as a convergent
infinite product

(α; q)∞ =

∞
∏

j=0

(1− αqj).

In view of the relation

lim
q→1−

(qα; q)n
(1− q)n

= (α)n,
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we observe that the q-shifted factorial (1.2) reduces to the familiar Pochhammer
symbol (α)n, where (α)n = α(α+ 1) · · · (α+ n− 1).

It may be noted that the q-Gauss hypergeometric function 2Φ1[−] (see
Gasper and Rahman [12, p. 3, eqn.(1.2.14)]) is defined by

2Φ1 [α, β; γ; q, z] =

∞
∑

n=0

(α; q)n(β; q)n
(γ; q)n(q; q)n

zn (|q| < 1, |z| < 1),

and as a special case of the above series for γ = β, we have

1Φ0 [α;−; q, z] =

∞
∑

n=0

(α; q)n
(q; q)n

zn (|q| < 1, |z| < 1).

Also, the q-derivative and q-integral of a function on a subset of C are, respec-
tively, given by (see [12] pp. 19–22)

Dqf(z) =
f(z)− f(zq)

(1− q)z
, (z 6= 0, q 6= 0)

and
∫ z

0

f(t)dqt = z(1− q)

∞
∑

k=0

qkf(zqk).

Therefore, the q-derivative of f(z) = zn, where n is a positive integer is given
by

Dqz
n =

zn − (zq)n

(1− q)z
= [n]q z

n−1,

where

[n]q =
1− qn

1− q
= qn−1 + · · ·+ 1

and is called the q-analogue of n. As q → 1, we have [n]q = qn−1 + · · · + 1 →
1 + · · ·+ 1 = n.

In the following, we define the fractional q-calculus operators of a complex-
valued function f(z), which were recently studied by S. D. Purohit and R. K.
Raina [18].

Definition 1.1 (Fractional q-integral operator). The fractional q-integral op-
erator Iδq,z of a function f(z) of order δ is defined by

(1.3) Iδq,zf(z) ≡ D−δ
q,zf(z) =

1

Γq(δ)

∫ z

0

(z − tq)δ−1f(t) dqt, (δ > 0),

where f(z) is analytic in a simply connected region of the z-plane containing
the origin and the q-binomial function (z − tq)δ−1 is given by

(z − tq)δ−1 = zδ−1
1Φ0[q

−δ+1;−; q, tqδ/z].

The series 1Φ0[δ;−; q, z] is single valued when | arg(z)| < π and |z| < 1 (see for
details [12], pp. 104–106), therefore, the function (z − tq)δ−1 in (1.3) is single
valued when | arg(−tqδ/z)| < π, |tqδ/z| < 1 and | arg(z)| < π.
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Definition 1.2 (Fractional q-derivative operator). The fractional q-derivative
operator Dδ

q,z of a function f(z) of order δ is defined by

Dδ
q,zf(z) ≡ Dq,z I

1−δ
q,z f(z) =

1

Γq(1 − δ)
Dq,z

∫ z

0

(z−tq)−δ f(t) dqt, (0 ≤ δ < 1),

where f(z) is suitably constrained and the multiplicity of (z− tq)−δ is removed
as in Definition 1.1.

Definition 1.3 (Extended fractional q-derivative operator). Under the hy-
potheses of Definition 1.2, the fractional q-derivative for a function f(z) of
order δ is defined by

Dδ
q,zf(z) = Dm

q,z I
m−δ
q,z f(z),

where m − 1 ≤ δ < 1, m ∈ N0 = N ∪ {0}, and N denotes the set of natural
numbers.

Remark 1.1. It follows from Definition 1.2 that

Dδ
q,z z

n =
Γq(n+ 1)

Γq(n+ 1− δ)
zn−δ (δ ≥ 0, and n > −1).

UsingDδ
q,z, we define a q-differintegral operator Ω

δ
q,p : Ap −→ Ap, as follows:

Ωδ
q,pf(z) =

Γq(p+ 1− δ)

Γq(p+ 1)
zδ Dδ

q,z f(z)

= zp +

∞
∑

n=p+1

Γq(p+ 1− δ)Γq(n+ 1)

Γq(p+ 1)Γq(n+ 1− δ)
anz

n,(1.4)

(δ < p+ 1; n ∈ N; 0 < q < 1; z ∈ U),

where Dδ
q,z f(z) in (1.4) represents, respectively, a fractional q-integral of f(z)

of order δ when −∞ < δ < 0 and a fractional q-derivative of f(z) of order δ

when 0 ≤ δ < p+ 1. Here we note that Ω0
q,pf(z) = f(z).

Recently, K. A. Selvakumaran et al. [23] defined the linear multiplier frac-

tional q-differintegral operator D
δ,m
q,p,λ as follows:

D
δ,0
q,p,λf(z) = f(z),

D
δ,1
q,p,λf(z) = (1− λ)Ωδ

q,pf(z) +
λ z

[p]q
Dq(Ω

δ
q,pf(z)), (λ ≥ 0),

D
δ,2
q,p,λf(z) = D

δ,1
q,p,λ(D

δ,1
q,p,λf(z)),

...

D
δ,m
q,p,λf(z) = D

δ,1
q,p,λ(D

δ,m−1
q,p,λ f(z)), m ∈ N.(1.5)

If f(z) ∈ Ap is given by (1.1), then by (1.5), we have

D
δ,m
q,p,λf(z) = zp +

∞
∑

n=p+1

(

Γq(p+ 1− δ)Γq(n+ 1)

Γq(p+ 1)Γq(n+ 1− δ)

[

1− λ+
[n]q
[p]q

λ

])m

anz
n.
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It can be seen that, by specializing the parameters the operator D
δ,m
q,p,λ reduces

to many known and new integral and differential operators. In particular, when

δ = 0, p = 1 and q → 1 the operator D
δ,m
q,p,λ reduces to the operator introduced

by F. AL-Oboudi [2] and if δ = 0, p = 1, λ = 1, q → 1 it reduces to the
operator introduced by G. S. Sălăgean [22].

The q-analogues to the function classes Sp(b, α) and Cp(b, α) are given as
follows:

A function f ∈ Ap is said to be in the class Sq,p(b, α) of p-valently starlike
of complex order b (b ∈ C − {0}) and type α (0 ≤ α < p) with respect to
q-differentiation if it satisfies

ℜ

{

[p]q +
1

b

(

zDq(f(z))

f(z)
− [p]q

)}

> α, (z ∈ U).

In addition, a function f ∈ Ap is said to be in the class Cq,p(b, α) of p-valently
convex of complex order b (b ∈ C − {0}) and type α (0 ≤ α < p) with respect
to q-differentiation if it satisfies

ℜ

{

[p]q +
1

b

zD2
q(f(z))

Dq(f(z))

}

> α, (z ∈ U).

By using the operator D
δ,m
q,p,λf(z) defined by (1.5) and q-differentiation, we

introduce two new subclasses of analytic functions Sδ,m
q,p,λ(b, α) and Cδ,m

q,p,λ(b, α)
as follows:

A function f(z) ∈ Ap is said to be in the class Sδ,m
q,p,λ(b, α) if and only if

(1.6)

ℜ

{

[p]q +
1

b

(

z Dq

(

D
δ,m
q,p,λf(z)

)

D
δ,m
q,p,λf(z)

− [p]q

)}

> α, (α ∈ [0, p), b ∈ C−{0}, z ∈ U).

Furthermore, a function f(z) ∈ Ap is said to be in the class Cδ,m
q,p,λ(b, α) if

and only if
(1.7)

ℜ

{

[p]q +
1

b

(

z D2
q

(

D
δ,m
q,p,λf(z)

)

Dq

(

D
δ,m
q,p,λf(z)

)

)}

> α, (α ∈ [0, p), b ∈ C− {0}, z ∈ U).

It is interesting to note that, the classes Sδ,m
q,p,λ(b, α) and Cδ,m

q,p,λ(b, α) generalize
several well known subclasses of analytic functions. For instance, when p =

1, m = 0 and b = 1 the class Sδ,m
q,p,λ(b, α) reduces to S∗

q (α) the class of starlike

functions with respect to q differentiation of order α (0 ≤ α < 1) and the

class Cδ,m
q,p,λ(b, α) reduces to Cq(α) the class of convex functions with respect to

q differentiation of order α (0 ≤ α < 1), for details we refer to [23]. Also, the
following cases are worthy of note here. If q → 1, then

1. Sδ,0
1,1,λ(b, α) = S∗

α(b) and S0,1
1,1,1(b, α) = Cδ,0

1,1,λ(b, α) = Cα(b) (see [10]),
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2. Sδ,0
1,1,λ(b, 0) = S∗(b) (see [14]) and S0,1

1,1,1(b, 0) = Cδ,0
1,1,λ(b, 0) = C(b) (see

[24]),

3. Sδ,0
1,1,λ(cosβe

−iβ , α) = Sβ
α , (|β| < π/2, 0 ≤ α < 1), the class of β-spirallike

functions of order α (see [13]),

4. Cδ,0
1,1,λ(cos βe

−iβ , α) = Cβ
α, (|β| < π/2, 0 ≤ α < 1), the class of β-

Robertson functions of order α (see [9]).

Using the operator D
δ,m
q,p,λ, K. A. Selvakumaran et al. in [23] introduced the

following p-valent q-integral operators.

Definition 1.4. Let m = (m1,m2, . . . ,mn) ∈ N
n
0 , γ = (γ1, γ2, . . . , γn) ∈ R

n
+

and fi ∈ Ap for all i = {1, 2, . . . , n}, n ∈ N. Then Fq(z) : A
n
p → Ap is defined

as

(1.8) Fq(z) = Fδ,γ,m
q,p,λ (f1, f2, . . . , fn)(z) =

∫ z

0

[p]q t
p−1

n
∏

i=1

(

D
δ,mi

q,p,λfi(t)

tp

)γi

dqt

and Gq(z) : A
n
p → Ap is defined as

(1.9)

Gq(z) = Gδ,γ,m
q,p,λ (f1, f2, . . . , fn)(z) =

∫ z

0

[p]q t
p−1

n
∏

i=1

(

Dq

(

D
δ,mi

q,p,λfi(t)
)

[p]q tp−1

)γi

dqt,

where D
δ,mi

q,p,λfi(t) is given by (1.5).

It is interesting to observe that several well known and new integral operators
are special cases of the operators Fq(z) and Gq(z). We list a few of them in
the following remarks.

Remark 1.2. Letting mi = 0 for all i = {1, 2, . . . , n} and q → 1, the q-integral
operator Fq(z) reduces to the operator Fp(z) studied by B. A. Frasin in [11].
Upon setting p = 1, δ = 0, λ = 1 and q → 1, we obtain the integral operator
DkF (z) studied by D. Breaz et al. in [6]. For p = 1, m1 = m2 = · · · = mn = 0
and q → 1, the operator Fq(z) reduces to the operator Fn(z) which was studied
by D. Breaz and N. Breaz in [4]. Observe that when p = n = 1, m1 = 0, γ1 = γ

and q → 1, we obtain the integral operator Iγ(f)(z) studied by V. Pescar and
S. Owa in [15]. Also, for p = n = 1, m1 = 0, γ1 = 1 and q → 1, the q-integral
operator Fq(z) reduces to the Alexander integral operator I(f)(z) studied in
[1].

Remark 1.3. Letting mi = 0 for all i = {1, 2, . . . , n} and q → 1, the q-integral
operator Gq(z) reduces to the operator Gp(z) studied by B. A. Frasin in [11].
For p = 1, m1 = m2 = · · · = mn = 0 and q → 1, the operator Gq(z) reduces to
the operatorGγ1,γ2,...,γn

(z) which was studied by D. Breaz et al. (see [7]). Also,
for p = n = 1, m1 = 0, γ1 = 1 and q → 1, the q-integral operator Gq(z) reduces
to the integral operator G(z) introduced and studied by J. A. Pfaltzgraff (see
[16]).
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In the next sections, we study some properties of the q-integral opera-
tors Fq(z) and Gq(z) defined by (1.8) and (1.9) respectively, on the classes

Sδ,m
q,p,λ(b, α) and Cδ,m

q,p,λ(b, α). As special cases, the order of convexity of the

operators
∫ z

0

(

f(t)
t

)γ
dt and

∫ z

0

(

f ′(t)
)γ
dt are also given.

2. Sufficient conditions for the operator Fq(z)

Theorem 2.1. Let m = (m1,m2, . . . ,mn) ∈ N
n
0 , γ = (γ1, γ2, . . . , γn) ∈

R
n
+, 0 ≤ αi < p, b ∈ C−{0} and fi ∈ Sδ,mi

q,p,λ(b, αi) for all i = {1, 2, . . . , n}, n ∈
N. If

0 ≤ [p]q +

n
∑

i=1

γi(αi − [p]q) +
ℜ{b}

|b|2

(

p− 1 +
(

[p]q − p
)

n
∑

i=1

γi

)

< p,

then the q-integral operator Fq defined by (1.8) is in the class Cq,p(b, η), where

η = [p]q +

n
∑

i=1

γi(αi − [p]q) +
ℜ{b}

|b|2
(

p− 1 +
(

[p]q − p
)

n
∑

i=1

γi
)

.

Proof. From (1.8), we observe that Fq(z) ∈ Ap. On the other hand, it is easy
to verify that

Dq (Fq(z)) = [p]q z
p−1

n
∏

i=1

(

D
δ,mi

q,p,λfi(z)

zp

)γi

.

Now by logarithmic q-differentiation we have,

ln q

q − 1

D2
q (Fq(z))

Dq (Fq(z))
=

ln q

q − 1

[

p− 1

z
+

n
∑

i=1

γi

(

Dq

(

D
δ,mi

q,p,λfi(z)
)

D
δ,mi

q,p,λfi(z)
−

p

z

)]

.

Therefore,

zD2
q(Fq(z))

Dq(Fq(z))
= p− 1 +

n
∑

i=1

γi

(

zDq

(

D
δ,mi

q,p,λfi(z)
)

D
δ,mi

q,p,λfi(z)
− p

)

.

Multiplying the above equality with 1/b, we have

1

b

zD2
q(Fq(z))

Dq(Fq(z))
=

p− 1

b
+

n
∑

i=1

γi
1

b

(

zDq

(

D
δ,mi

q,p,λfi(z)
)

D
δ,mi

q,p,λfi(z)
− [p]q

)

+
[p]q − p

b

n
∑

i=1

γi.

The above relation is equivalent to

[p]q+
1

b

zD2
q(Fq(z))

Dq(Fq(z))
= [p]q+

p−1

b
+

n
∑

i=1

γi

{

[p]q+
1

b

(

zDq

(

D
δ,mi

q,p,λfi(z)
)

D
δ,mi

q,p,λfi(z)
−[p]q

)

}

+

(

[p]q − p

b
− [p]q

) n
∑

i=1

γi.(2.1)
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Since fi ∈ Sδ,mi

q,p,λ(b, αi) for all i = {1, 2, . . . , n}, we get

ℜ

{

[p]q +
1

b

zD2
q(Fq(z))

Dq(Fq(z))

}

= [p]q +

n
∑

i=1

γiℜ

{

[p]q +
1

b

(

zDq

(

D
δ,mi

q,p,λfi(z)
)

D
δ,mi

q,p,λfi(z)
− [p]q

)

}

− [p]q

n
∑

i=1

γi +
ℜ{b}

|b|2

(

p− 1 +
(

[p]q − p
)

n
∑

i=1

γi

)

> [p]q +

n
∑

i=1

γiαi − [p]q

n
∑

i=1

γi +
ℜ{b}

|b|2

(

p− 1 +
(

[p]q − p
)

n
∑

i=1

γi

)

= [p]q +
n
∑

i=1

γi(αi − [p]q) +
ℜ{b}

|b|2

(

p− 1 +
(

[p]q − p
)

n
∑

i=1

γi

)

.(2.2)

So, Fq(z) ∈ Cq,p(b, η), with η = [p]q +
∑n

i=1 γi(αi − [p]q) +
ℜ{b}

|b|2

(

p− 1 +
(

[p]q −

p
)
∑n

i=1 γi
)

. �

Taking p = 1, b = 1 and mi = 0 for all i = {1, 2, . . . , n} in Theorem 2.1 we
have the following corollary.

Corollary 2.2. Let γ = (γ1, γ2, . . . , γn) ∈ R
n
+, 0 ≤ αi < 1 and fi ∈ Sq(αi) for

all i = {1, 2, . . . , n}, n ∈ N. If

0 ≤ 1 +

n
∑

i=1

γi(αi − 1) < 1,

then the q-integral operator

Fγ
q (z) =

∫ z

0

(

f1(t)

t

)γ1

· · ·

(

fn(t)

t

)γn

dqt

is convex with respect to q-differentiation of order η, where η = 1+
∑n

i=1 γi(αi−
1).

3. Sufficient conditions for the operator Gq(z)

Theorem 3.1. Let m = (m1,m2, . . . ,mn) ∈ N
n
0 , γ = (γ1, γ2, . . . , γn) ∈

R
n
+, 0 ≤ αi < p, b ∈ C−{0} and fi ∈ Cδ,mi

q,p,λ(b, αi) for all i = {1, 2, . . . , n}, n ∈
N. If

0 ≤

(

[p]q +
(p− 1)ℜ{b}

|b|2

)(

1−

n
∑

i=1

γi

)

+

n
∑

i=1

γiαi < p,

then the q-integral operator Gq defined by (1.9) is in the class Cq,p(b, η), where

η =

(

[p]q +
(p− 1)ℜ{b}

|b|2

)

(

1−

n
∑

i=1

γi
)

+

n
∑

i=1

γiαi.
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Proof. From (1.9), we observe that Gq(z) ∈ Ap. On the other hand, it is easy
to verify that

Dq (Gq(z)) = [p]q z
p−1

n
∏

i=1

(

Dq

(

D
δ,mi

q,p,λfi(z)
)

[p]q zp−1

)γi

.

Now by logarithmic q-differentiation we have,

ln q

q − 1

D2
q (Gq(z))

Dq (Gq(z))
=

ln q

q − 1

[

p− 1

z
+

n
∑

i=1

γi

(

D2
q

(

D
δ,mi

q,p,λfi(z)
)

Dq

(

D
δ,mi

q,p,λfi(z)
)
−

p− 1

z

)]

.

Therefore,

zD2
q(Gq(z))

Dq(Gq(z))
= p− 1 +

n
∑

i=1

γi

(

zD2
q

(

D
δ,mi

q,p,λfi(z)
)

Dq

(

D
δ,mi

q,p,λfi(z)
)

− (p− 1)

)

.

Multiplying the above equality with 1/b, we have

1

b

zD2
q(Gq(z))

Dq(Gq(z))
=

p− 1

b

(

1−

n
∑

i=1

γi

)

+

n
∑

i=1

γi
1

b

(

zD2
q

(

D
δ,mi

q,p,λfi(z)
)

Dq

(

D
δ,mi

q,p,λfi(z)
)

)

.

Then the above relation is equivalent to

[p]q+
1

b

zD2
q(Gq(z))

Dq(Gq(z))
(3.1)

=

(

[p]q +
p− 1

b

)(

1−
n
∑

i=1

γi

)

+
n
∑

i=1

γi

{

[p]q+
1

b

(

zD2
q

(

D
δ,mi

q,p,λfi(z)
)

Dq

(

D
δ,mi

q,p,λfi(z)
)

)}

.

Since fi ∈ Cδ,mi

q,p,λ(b, αi) for all i = {1, 2, . . . , n}, we get

ℜ

{

[p]q +
1

b

zD2
q(Gq(z))

Dq(Gq(z))

}

=

(

[p]q +
(p− 1)ℜ{b}

|b|2

)(

1−
n
∑

i=1

γi

)

+

n
∑

i=1

γiℜ

{

[p]q +
1

b

(

zD2
q

(

D
δ,mi

q,p,λfi(z)
)

Dq

(

D
δ,mi

q,p,λfi(z)
)

)}

>

(

[p]q +
(p− 1)ℜ{b}

|b|2

)(

1−

n
∑

i=1

γi

)

+

n
∑

i=1

γiαi.(3.2)

So, Gq(z) ∈ Cq,p(b, η), with η =
(

[p]q +
(p−1)ℜ{b}

|b|2

)

(

1−
∑n

i=1 γi
)

+
∑n

i=1 γiαi.

�

Taking p = 1, b = 1 and mi = 0 for all i = {1, 2, . . . , n} in Theorem 2.1 we
have the following corollary.
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Corollary 3.2. Let γ = (γ1, γ2, . . . , γn) ∈ R
n
+, 0 ≤ αi < p, and fi ∈ Cq(αi) for

all i = {1, 2, . . . , n}, n ∈ N. If

0 ≤ 1 +

n
∑

i=1

γi(αi − 1) < 1,

then the q-integral operator

Gγ
q (z) =

∫ z

0

(Dqf1(t))
γ1 · · · (Dqfn(t))

γn dqt

is convex with respect to q-differentiation of order η, where η = 1+
∑n

i=1 γi(αi−
1).

4. Applications to convexity and spirallikeness

As remarked in Section 1, for particular values of the parameters, the classes

Sδ,m
q,p,λ(b, α), C

δ,m
q,p,λ(b, α) reduce to many new classes of analytic functions. If we

set b = e−iβ cosβ (|β| < π/2) in (1.6) and (1.7), then we have the classes

(4.1)

Sδ,m
q,p,λ(β, α) =

{

f ∈ Ap : ℜ

(

eiβ
z Dq

(

D
δ,m
q,p,λf(z)

)

D
δ,m
q,p,λf(z)

)

> α cosβ, 0 ≤ α < p

}

and

Cδ,m
q,p,λ(β, α)

(4.2)

=

{

f ∈ Ap : ℜ

{

eiβ

(

[p]q +
z D2

q

(

D
δ,m
q,p,λf(z)

)

Dq

(

D
δ,m
q,p,λf(z)

)

)}

> α cosβ, 0 ≤ α < p

}

respectively. Also, we put

Sδ,0
q,p,λ(β, α) ≡ Sq,p(β, α) and Cδ,0

q,p,λ(β, α) ≡ Cq,p(β, α).

In particular, we set

Sδ,0
1,1,λ(β, α) ≡ Sβ

α , (|β| < π/2, 0 ≤ α < 1)

and

Cδ,0
1,1,λ(β, α) ≡ Cβ

α, (|β| < π/2, 0 ≤ α < 1)

for the class of β-spirallike functions of order α (see [13]) and the class of
β-Robertson functions of order α (see [9]), respectively.

In view of Theorem 2.1, Theorem 3.1 and the above definitions, we have the
following results.
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Theorem 4.1. Letm ∈ N0, γ > 0, 0 ≤ α < p, b ∈ C−{0} and f ∈ Sδ,m
q,p,λ(b, α).

If

0 ≤ [p]q + γ(α− [p]q) +
ℜ{b}

|b|2
[

p− 1 +
(

[p]q − p
)

γ
]

< p,

then the q-integral operator Fδ,γ,m
q,p,λ , defined by

Fδ,γ,m
q,p,λ f(z) =

∫ z

0

[p]q t
p−1

(

D
δ,m
q,p,λf(t)

tp

)γ

dqt

is p-valently convex of complex order b and type η with respect to q-different-

iation, where

η = [p]q + γ(α− [p]q) +
ℜ{b}

|b|2
[

p− 1 +
(

[p]q − p
)

γ
]

.

Proof. From (1.8) and (2.2) with n = 1, m1 = m, γ1 = γ, α1 = α, f1 = f , we
get the desired result. �

Letting q → 1, p = 1 and m = 0 in Theorem 4.1, we have:

Corollary 4.2. Let γ > 0, α be a real number with 0 ≤ α < 1. Also, let f(z)
be starlike of complex order b (b ∈ C−{0}) and type α. If 0 ≤ 1+γ(α−1) < 1,

then the integral operator
∫ z

0

(

f(t)
t

)γ
dt is convex of complex order b and type

1 + γ(α− 1) in U .

Theorem 4.3. Let m = (m1,m2, . . . ,mn) ∈ N
n
0 , γ = (γ1, γ2, . . . , γn) ∈

R
n
+, 0 ≤ αi < p, |β| < π/2 and fi ∈ Sδ,mi

q,p,λ(β, αi) for all i = {1, 2, . . . , n}, n ∈
N. If

0 ≤ [p]q + p− 1 +

n
∑

i=1

γi(αi − p) < p,

then the q-integral operator Fq defined by (1.8) is in the class Cq,p(β, η), where

η = [p]q + p− 1 +

n
∑

i=1

γi(αi − p).

Proof. From (2.1) with b = e−iβ cosβ, (|β| < π/2) and also from (4.1) and
(4.2), we obtain the desired result. �

Letting q → 1, p = 1 and mi = 0 for all i = {1, 2, . . . , n} in Theorem 4.3, we
have:

Corollary 4.4. Let γ = (γ1, γ2, . . . , γn) ∈ R
n
+ and fi ∈ Sβ

αi
, (|β| < π/2, 0 ≤

αi < 1) for all i = {1, 2, . . . , n}. If 0 ≤ 1 +
∑n

i=1 γi(αi − 1) < 1, then integral

operator

Fγ1,...,γn
(z) =

∫ z

0

(

f1(t)

t

)γ1

· · ·

(

fn(t)

t

)γn

dt

is in the class of β-Robertson functions of order η where η = 1+
∑n

i=1 γi(αi−1).
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Theorem 4.5. Let m ∈ N0, γ > 0, 0 ≤ α < p, b ∈ C−{0} and f ∈ Cδ,m
q,p,λ(b, α).

If

0 ≤ γα+ (1− γ)

(

[p]q +
(p− 1)ℜ{b}

|b|2

)

< p,

then the q-integral operator Gδ,γ,m
q,p,λ defined by

Gδ,γ,m
q,p,λ f(z) =

∫ z

0

[p]q t
p−1

(

Dq

(

D
δ,m
q,p,λf(t)

)

[p]q tp−1

)γ

dqt,

is p-valently convex of complex order b and type η with respect to q-different-

iation, where

η = γα+ (1− γ)

(

[p]q +
(p− 1)ℜ{b}

|b|2

)

.

Proof. From (1.9) and (3.2) with n = 1, m1 = m, γ1 = γ, α1 = α, f1 = f , we
get the desired result. �

Letting q → 1, p = 1 and m = 0 in Theorem 4.5, we have:

Corollary 4.6. Let γ > 0, α be a real number with 0 ≤ α < 1. Also, let f(z)
be convex of complex order b (b ∈ C−{0}) and type α. If 0 ≤ 1+ γ(α− 1) < 1,

then the integral operator
∫ z

0

(

f ′(t)
)γ
dt is convex of complex order b and type

1 + γ(α− 1) in U .

Theorem 4.7. Let m = (m1,m2, . . . ,mn) ∈ N
n
0 , γ = (γ1, γ2, . . . , γn) ∈

R
n
+, 0 ≤ αi < p, |β| < π/2 and fi ∈ Cδ,mi

q,p,λ(β, αi) for all i = {1, 2, . . . , n}, n ∈
N. If

0 ≤ [p]q + p− 1 +

n
∑

i=1

γi(αi − [p]q − p+ 1) < p,

then the q-integral operator Gq defined by (1.9) is in the class Cq,p(β, η), where

η = [p]q + p− 1 +

n
∑

i=1

γi(αi − [p]q − p+ 1).

Proof. From (3.1) with b = e−iβ cosβ, (|β| < π/2) and also from (4.2), we
obtain the desired result. �

Letting q → 1, p = 1 and mi = 0 for all i = {1, 2, . . . , n} in Theorem 4.7, we
have:

Corollary 4.8. Let γ = (γ1, γ2, . . . , γn) ∈ R
n
+ and fi ∈ Cβ

αi
, (|β| < π/2, 0 ≤

αi < 1) for all i = {1, 2, . . . , n}. If 0 ≤ 1 +
∑n

i=1 γi(αi − 1) < 1, then integral

operator

Gγ1,...,γn
(z) =

∫ z

0

(

f ′

1(t)
)γ1

· · ·
(

f ′

n(t)
)γn

dt

is in the class of β-Robertson functions of order η where η = 1+
∑n

i=1 γi(αi−1).
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Further, by suitably specializing the parameters in Theorem 2.1 and in The-
orem 3.1, one can easily deduce the known results obtained in [3], [5] and [8].
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549–553.

[9] P. N. Chichra, Regular functions f(z) for which zf ′(z) is α-spiral-like, Proc. Amer.
Math. Soc. 49 (1975), 151–160.

[10] B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog.
Nyházi. (N.S.) 22 (2006), no. 2, 179–191

[11] , Convexity of integral operators of p-valent functions, Math. Comput. Modelling
51 (2010), no. 5-6, 601–605.

[12] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics
and its Applications, 35, Cambridge Univ. Press, Cambridge, 1990.

[13] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19 (1967), 449–456.
[14] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math.

25 (1985), no. 1, 1–12.
[15] V. Pescar and S. Owa, Sufficient conditions for univalence of certain integral operators,

Indian J. Math. 42 (2000), no. 3, 347–351.
[16] J. A. Pfaltzgraff, Univalence of the integral of f ′(z)λ, Bull. London Math. Soc. 7 (1975),

no. 3, 254–256.

[17] S. D. Purohit, A new class of multivalently analytic functions associated with fractional

q-calculus operators, Fract. Differ. Calc. 2 (2012), no. 2, 129–138.
[18] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with

fractional q-calculus operators, Math. Scand. 109 (2011), no. 1, 55–70.
[19] , Fractional q-calculus and certain subclass of univalent analytic functions, Math-

ematica 55(78) (2013), no. 1, 62–74.
[20] , Some classes of analytic and multivalent functions associated with q-derivative

operators, Acta Univ. Sapientiae Math. 6 (2014), no. 1, 5–23.
[21] , On a subclass of p-valent analytic functions involving fractional q-calculus op-

erators, Kuwait J. Sci. 42 (2015), no. 1, 1–15.
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