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SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL

OPERATORS ON FOCK–SOBOLEV SPACES

Tesfa Mengestie

Abstract. We study some spectral properties of Volterra-type integral

operators Vg and Ig with holomorphic symbol g on the Fock–Sobolev
spaces Fpψm . We showed that Vg is bounded on Fpψm if and only if g

is a complex polynomial of degree not exceeding two, while compactness

of Vg is described by degree of g being not bigger than one. We also
identified all those positive numbers p for which the operator Vg belongs

to the Schatten Sp classes. Finally, we characterize the spectrum of Vg in

terms of a closed disk of radius twice the coefficient of the highest degree
term in a polynomial expansion of g.

1. Introduction

The boundedness and compactness properties of integral operators stand
among the very well studied objects in operator related function-theories. They
have been studied for a broad class of operators on various spaces of holomor-
phic functions including the Hardy spaces [1, 2, 18], Bergman spaces [19–21],
Fock spaces [6, 7, 11, 13, 14, 16, 17], Dirichlet spaces [3, 9, 10], Model spaces
[15], and logarithmic Bloch spaces [24]. Yet, they still constitute an active area
of research because of their multifaceted implications. Typical examples of op-
erators subjected to this phenomena are the Volterra-type integral operator Vg
and its companion Ig, defined by

Vgf(z) =

∫ z

0

f(w)g′(w)dw and Igf(z) =

∫ z

0

f ′(w)g(w)dw,

where g is a holomorphic symbol. Applying integration by parts in any one of
the above integrals gives the relation

Vgf + Igf = Mgf − f(0)g(0),(1.1)
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where Mgf = gf is the multiplication operator of symbol g. On the classical
Fock spaces with the Gaussian weight, some spectral structures of these oper-
ators were studied by several authors for example in [6, 11, 13, 14, 16]. On the
other hand, when the weight decays faster than the classical Gaussian weight,
they were recently studied in [7, 17]. From the results in these two later works,
we observed that while the operator Vg enjoys a richer structure when it acts
between weighted Fock spaces of faster decaying weights in contrast to its ac-
tion on the classical Fock spaces, the analogues structures for Ig and Mg has
got rather poorer. A natural question is then what happens to these structures
when the weight decays slower than the classical Gaussian weight? The central
aim of this paper is to investigate this situation. Prototype examples of spaces
generated by such slower decaying weights, which we are interested in, are the
Fock–Sobolev spaces as described below.

Let m be any nonnegative integer and 0 < p <∞. Then, the Fock–Sobolev
spaces F(m,p) consist of entire functions f such that f (m), the m-th order
derivative of f , belongs to the classical Fock spaces Fp; which consist of all
entire functions f for which∫

C
|f(z)|pe−

p
2 |z|

2

dA(z) <∞.

The Fock–Sobolev spaces were introduced in [5] where it was proved that
f belongs to F(m,p) if and only if the function z 7→ |z|mf(z) belongs to

Lp(C, e−p|z|2/2). By closed graph theorem argument, we have that f belongs to

F(m,p) if and only if z 7→ (β+ |z|)mf(z) belongs to Lp(C, e−p|z|2/2) for any pos-
itive number β. A consequence of this is that the norm in F(m,p) is comparable
to the quantity

(
C(p,m)

∫
C
|f(z)|p(1 + |z|)mpe−

p
2 |z|

2

dA(z)

)1/p

for 0 < p <∞, and

C(m,p) = (p/2)
mp
2 +1

(
πΓ
(mp

2
+ 1
))−1

,

where Γ denotes the Gamma function, dA denotes the usual Lebesgue area
measure on C, and we fix β ' 1 for simplicity. To put the spaces into
weighted/generalized Fock spaces context, we may now set the sequence of
the corresponding weight functions as

ψm(z) =
1

2
|z|2 −m log(1 + |z|),(1.2)
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and observe that the Fock–Sobolev spaces F(m,p) are just the weighted Fock

spaces Fpψm which consist of all entire functions f for which 1∫
C
|f(z)|pe−pψm(z)dA(z) ' ‖f‖p(p,m) <∞.

We may now state our first main result.

Theorem 1.1. Let g be an entire function on C, 0 < p, q <∞, and if

(i) 0 < p ≤ q <∞, then Vg : Fpψm → F
q
ψm

is

(a) bounded if and only if g(z) = az2 + bz + c, a, b, c ∈ C.
(b) compact if and only if g(z) = az + b, a, b,∈ C.

(ii) 0 < q < p <∞, then the following statements are equivalent
(a) Vg : Fpψm → F

q
ψm

is bounded;

(b) Vg : Fpψm → F
q
ψm

is compact;

(c) g(z) = az + b whenever q
2 >

p−q
p , and g= constant otherwise.

(iii) 0 < p < ∞ and Vg compact on F2
ψm

, then Vg belongs to the Schatten

Sp(F2
ψm

) classes for all p > 2. On the other hand, if 0 < p < 2, then

Vg belongs to Sp(F2
ψm

) if and only if g is the zero function.

Theorem 1.2. Let g be an entire function on C, 0 < p, q <∞, and if

(i) 0 < p ≤ q <∞, then Ig : Fpψm → F
q
ψm

is

(a) bounded if and only if g is a constant function.
(b) compact if and only if g is the zero function.

(ii) 0 < q < p <∞, then the following are equivalent.
(a) Ig : Fpψm → F

q
ψm

is bounded;

(b) Ig : Fpψm → F
q
ψm

is compact;

(c) g is the zero function.

It may be noted that when m = 0, the spaces Fpψm reduce to the classical

Fock spaces Fp, and for this particular case, the results were proved in [6, 13,
14]. In view of our current results, we conclude that there exists no richer
boundedness and compactness structures for Vg and Ig on Fock-Sobolev spaces
than those on the classical setting. As can be seen from (1.2), the Fock–Sobolev
spaces are generated by making small perturbations of the weight function on
the classical Fock spaces. It turns out that such perturbations play no role in
the structure of the operators and rather extend the classical results to all the
spaces Fpψm independent of the values of m.

In addition, the results show that there exists no nontrivial Volterra compan-
ion integral type operators Ig acting between any of the Fock–Sobolev spaces.

1The notation U(z) . V (z) (or equivalently V (z) & U(z)) means that there is a constant
C such that U(z) ≤ CV (z) holds for all z in the set of a question. We write U(z) ' V (z) if

both U(z) . V (z) and V (z) . U(z).
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Another observation worthwhile making is that when g(z) = z, the operator
Vg reduces to the original Volterra operator

V gf(z) =

∫ z

0

f(w)dwA(w).

By particular cases of the results above, we conclude that this operator is always
bounded in its action on the Fock–Sobolev spaces.

1.1. Spectrum of the integral operators

In contrast to the fairly good understanding of the boundedness, compact-
ness, and Schatten class membership of the Volterra-type integral operators
on various Banach spaces, much less is known about their spectral. Recently,
Constantin and Persson [8], determined the spectrum of Vg acting on gen-
eralized Fock spaces where the inducing weight function takes the particular
form |z|A, A > 0 and 1 ≤ p < ∞. Our next result describes the spectrum
of the Volterra-type integral operators on Fock–Sobolev spaces in terms of a
closed disk of radius involving the coefficient of the highest degree term in a
polynomial expansion of g as precisely formulated below.

Theorem 1.3. (i) Let p ≥ 1 and Vg : Fpψm → F
p
ψm

be a bounded operator, i.e.,

g(z) = az2 + bz, a, b,∈ C. Then

σ(Vg) =
{
λ ∈ C : |λ| ≤ 2|a|

}
= {0} ∪

{
λ ∈ C \ {0} : eg(z)/λ /∈ Fpψm

}
.(1.3)

(ii) Let p ≥ 1 and Ig : Fpψm → F
p
ψm

be a bounded operator, i.e., g(z) =
c =constant. Then

σ(Ig) = {c}.

The results here are also independent of the order m, and coincide with
the corresponding results in the classical Fock spaces setting. Furthermore, for
m = 0, the result in (1.3) follows also from the main result in [8] as a particular
case.

2. Preliminaries

For each m, the spaces F2
ψm

are reproducing kernel Hilbert spaces with
kernel K(w,m) and normalized reproducing kernel functions k

(w,m)
for a point

w in C. An explicit expression for K(w,m) is still unknown. On the other hand,
for each w in C by Proposition 2.7 of [4], we have an important asymptotic
relation

(2.1) ‖K
(w,m)

‖2(2,m) ' e
2ψm(w).

As noted before when m = 0, the space F2
m reduces to the classical Fock space

F2, and in this case we precisely have ‖K
(z,0)
‖2(2,0) = e|z|

2

and K(w,0)(z) = ewz.

For other p’s, Corollary 14 of [5] gives the one sided estimate

‖K(w,m)‖(p,m) . e
ψm(w).(2.2)
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Because of the reproducing property of the kernel and Parseval identity, it
further holds that

K(w,m)(z) =

∞∑
n=1

en(z)en(w) and ‖K
(w,m)

‖2(2,m) =

∞∑
n=1

|en(w)|2(2.3)

for any orthonormal basis (en)n∈N of F2
ψm

. This and the estimate in (2.1) will
be repeatedly used in the sequel. Another important ingredient needed in the
proofs of the results is the following pointwise estimate for the reproducing
kernel functions.

Lemma 2.1. There exists a small positive number δ such that for any w ∈ C

|K(m,w)(z)| & eψm(z)+ψm(w)

for all z ∈ D(w, δ), where D(w, δ) refers to the Euclidian disk of radius r and
center w.

Proof. The lemma will follow from [22, Proposition 3.3] once we show that the
weight function ψm satisfies the growth condition

c . ∆ψm(z) . C(2.4)

for all z ∈ C and some positive constants c and C. Thus, we consider

ψm(z) =
|z|2

2
−m log(β + |z|) ' |z|

2

2
− m

2
log(β + |z|2),

and a straightforward calculation gives that

∆ψm(z) = 2− 2mβ

(β + |z|2)2
.

Then, the required condition (2.4) holds for any choice of β > m as 2(1− m
β ) ≤

∆ψm(z) ≤ 2. For simplicity, we will continue setting β = 1 throughout the rest
of the paper. �

2.1. Littlewood–Paley type formula

Dealing with Volterra-type integral operators in normed spaces gets easier
when the norms in the target spaces of the operators are described in terms of
Littlewood–Paley type formula. The operators have been extensively studied
in the spaces where such formulas are found to be accessible. The formulas
will primarily help get rid of the integrals appearing in defining the operators.
Our next key lemma does this job by characterizing the Fock–Sobolev spaces
in terms of derivatives.

Lemma 2.2. Let 0 < p <∞ and f be a holomorphic function on C. Then

‖f‖pFpψm
' |f(0)|p +

∫
C

|f ′(z)|p(1 + |z|)pe−pψm(z)(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)p dA(z).(2.5)
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Proof. We plan to show that the estimate in (2.5) follows from the general
estimate in Theorem 19 of [7]. To this end, it suffices to verify that the sequence
of our weight functions ψm satisfy all the preconditions required in the theorem
there, which are;

i) There should exist a positive r0 for which ψ′m(r) 6= 0 for all r > r0. This,
rather week requirement on the growth of ψm works fine as one can for example
take

r0 =
1 +
√

1 + 4m

2
.

In addition, we have that 1 + ψ′m(z) ' ψ′m(z) when |z| → ∞.
ii) The estimates

lim
r→∞

re−pψm(r)

ψ′m(r)
= 0

lim sup
r→∞

1

r

(
r

ψ′m(r)

)′
< p and(2.6)

lim inf
r→∞

1

r

(
r

ψ′m(r)

)′
> −∞,

hold for all positive p. The first estimate in (2.6) follows easily since

lim
r→∞

re−pψm(r)

ψ′m(r)
= lim
r→∞

r + r2

r2 + r −m
e−pψm(r) = lim

r→∞
e−pψm(r) = 0.

On the other hand, a simple computation shows that

1

r

(
r

ψ′m(r)

)′
=

2r2 − 2rm−m
r(r2 + r −m)2

,

from which it follows that

lim sup
r→∞

1

r

(
r

ψ′m(r)

)′
= lim sup

r→∞

2r2 − 2rm−m
r(r2 + r −m)2

≤ 0 < p.

It remains to verify the last estimate in (2.6). But this is rather immediate as

lim inf
r→∞

1

r

(
r

ψ′m(r)

)′
= lim inf

r→∞

2r2 − 2rm−m
r(r2 + r −m)2

= 0 > −∞.
�

We now state a key lemma on spectral properties of the operator Mg acting
between Fock–Sobolev spaces. The lemma is interest of its own.

Lemma 2.3. Let g be an analytic function on C, 0 < p, q <∞, and if

(i) q ≥ p, then Mg : Fpψm → F
q
ψm

is bounded (compact) if and only if g is

a constant (zero) function.
(ii) q < p, then Mg : Fpψm → F

q
ψm

is bounded (compact) if and only if g is
the zero function.
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(iii) 1 ≤ p <∞ and Mg : Fpψm → Fpψm is a bounded map, that is g = α =
constant, then

σp(Mg) = σ(Mg) = {α}.

Like that of the operator Ig, the lemma shows that there exists no nontrivial
multiplication operators Mg acting between the Fock–Sobolev spaces. This is
rather due to the relation in (1.1), as will be also explained in the proof of
Theorem 1.2 in Section 3.1.

Proof. We observe that the multiplication operator Mg is a special case of
weighted composition operators uCφf(z) = u(z)f(φ(z)); set u = g and φ(z) =
z. Several properties of uCφ have already been described in [12] from which
some will be used in our subsequent considerations. Let us now assume that
0 < p ≤ q < ∞. Then by Theorem 3.1 of [12], Mg : Fpψm → Fqψm is bounded
if and only

sup
w∈C

Bm(|g|q)(w) = sup
w∈C

∫
C
|k(w,m)(z)|q|g(z)|qe−qψm(z)dA(z) <∞.(2.7)

To arrive at the desired conclusion, we may proceed to investigate further the
boundedness of the integral transform in (2.7). To this end, assuming this
condition, and applying (2.1) and Lemma 2.1 we have

∞ > sup
w∈C

∫
C

|k(w,m)(z)|q|g(z)|q

eqψm(z)
dA(z) ≥ sup

w∈C

∫
D(w,δ)

|k(w,m)(z)|q

eqψm(z)
|g(z)|qdA(z)

& sup
w∈C

∫
D(w,δ)

|g(z)|qdA(z)(2.8)

for a small positive number δ. By subharmonicity of |g|q, we further have

∞ > sup
w∈C

∫
D(w,δ)

|g(z)|qdA(z) & sup
w∈C
|g(w)|q(2.9)

for all w ∈ C. From this we deduce that g is a bounded analytic function on
C. Then Liouville’s classical theorem forces it to be a constant.

Conversely, if g is a constant, then the integral in (2.7) is obviously finite
since all the Fock–Sobolev spaces Fpψm contain the reproducing kernels (see

[5, Corollary 14]).
A similar analysis shows that when 0 < p ≤ q < ∞, Mg is compact if and

only if g is the zero function.
(ii) When 0 < q < p <∞, then an application of Theorem 3.3 of [12] ensures

that the boundedness and compactness properties of Mg : Fpψm → F
q
ψm

are
equivalent and this happens if and only if∫

C

(
Bm(|g|q)(w)

) p
p−q dA(w)
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=

∫
C

(∫
C
|k(w,m)(z)|p|g(z)|pe−qψm(z)dA(z)

) p
p−q

dA(w) <∞.(2.10)

Arguing as in the series of estimates leading to (2.8) and (2.9), condition (2.10)
implies ∫

C
|g(w)|pdA(w) .

∫
C

(Bm(|g|q)(w))
p
p−q dA(w) <∞,

and from this we conclude that g is indeed the zero function.
(iii) By part (i) of the lemma, the only bounded multiplication operators are

the multiplications by constant functions. It means that we are actually dealing
with constant multiples of the identity operator, whose spectrum obviously
consists of the multiplicative constant. �

Lemma 2.4. Let a, λ ∈ C, g(z) = az2 and assume that |λ| > 2|a|. If f is an
entire function such that feg/λ belongs to Fpψm , then

∫
C

∣∣e g(z)λ f(z)
∣∣pe−pψm(z)dA(z) . |f(0)|p +

∫
C

∣∣f ′(z)e g(z)λ ∣∣p
(1 + ψ′m(z))p

e−pψm(z)dA(z).

(2.11)

The proof of the lemma follows from a simple variant of the proof of Propo-
sition 1 in [8]. We only need to set α = 1 and replace α|z|A in there by ψm(z)
and reset w(z) = p<(g(z)/λ)− pψm(z) and run the arguments.

3. Proof of the main results

We now turn to the proofs of the main results of the paper. Let 0 < p, q <∞
and µ be a positive Borel measure on C. We call µ a (p, q) Fock–Carleson
measure if the inequality∫

C
|f(z)|qe−

q
2 |z|

2

dµ(z) . ‖f‖q(p,m),

holds, and we call it a vanishing (p, q) Fock–Carleson measure if

lim
n→∞

∫
C
|fn(z)|qe−

q
2 |z|

2

dµ(z) = 0

for every uniformly bounded sequence fn in Fpψm that converges to zero uni-
formly on compact subset of C as n → ∞. These measures have been com-
pletely identified in [12].

We observe that by first setting

dµ(g,q)(z) =
|g′(z)|q(1 + |z|)qm+q(

1 + |z|+
∣∣|z|2 + |z| −m

∣∣)q dA(z),

and applying (2.5), we may write the norm of Vgf as

‖Vgf‖q(q,m) '
∫
C

|g′(z)|q|f(z))|q(1 + |z|)mq+q(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)q e− q2 |z|2dA(z)



SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS 1809

=

∫
C
|f(z)|qe−

q
2 |z|

2

dµ(g,q)(z).

In view of this, it follows that Vg : Fpψm → F
q
ψm

is bounded (compact) if and

only if µ(g,q) is a (p, q) (vanishing) Fock-Carleson measure. Consequently, if
0 ≤ p ≤ q < ∞, then Theorem 2.1 of [12] ensures that µ(g,q) is a (p, q) Fock-
Carleson measure if and only if µ̃(t,mq) is bounded for some or any positive t
where

µ̃(t,mq)(w) =

∫
C

e−
t
2 |z−w|

2

(1 + |z|)mq
dµ(g,q)(z).

Having singled out this equivalent reformulation, our next task will be to in-
vestigate the new formulation further, namely boundedness of the transform
µ̃(t,mq). Let us first assume its boundeness, and show that g is a complex
polynomial of degree not exceeding two. To this end,

∞ > sup
w∈C

∫
C

e−
t
2 |z−w|

2

(1 + |z|)mq
dµ(g,q)(z) = sup

w∈C

∫
C

e−
t
2 |z−w|

2 |g′(z)|q(1 + |z|)q(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)q dA(z)

& sup
w∈C

∫
D(w,1)

|g′(z)|q(1 + |z|)q(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)q dA(z) = S.

Observe that whenever z belongs to the disk D(w, 1), then{
1 + |z| ' |+ |w|
1 + |z|+

∣∣|z|+ |z|2 −m∣∣ ' 1 + |w|+
∣∣|w|+ |w|2 −m∣∣.(3.1)

This together with the subharmonicity of |g′|q implies that

S &
|g′(w)|q(1 + |w|)q(

1 + |w|+
∣∣|w|2 + |w| −m

∣∣)q
for all w ∈ C and our assertion follows.

On the other hand, if g(z) = az2 + bz + c, a, b, c ∈ C, then

sup
w∈C

µ̃(t,mq)(w) = sup
w∈C

∫
C
e−

t
2 |z−w|

2 |2az + b|q(1 + |z|)q(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)q dA(z)

. sup
w∈C

∫
C
e−

t
2 |z−w|

2

dA(z) <∞,

and completes the proof of part (a) of (i) in the theorem.
Similarly, for part (b), for 0 < p ≤ q < ∞, by Theorem 2.2 of [12], µ(g,q)

is a (p, q) vanishing Fock-Carleson measure if and only if µ̃(t,mq)(z) → 0 as
|z| → ∞. We may first assume this vanishing property and show that g is a
complex polynomial of degree not exceeding one. For this, following the same
arguments as above, we easily see from our assumption that

lim
|w|→∞

|g′(w)|(1 + |w|)
1 + |w|+

∣∣|w|2 + |w| −m
∣∣ = 0,
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and this obviously holds only if g′ is a constant as asserted.
Conversely, if g(z) = az + b, a, b,∈ C, then

lim
|w|→∞

µ̃(q,mq)(w) = lim
|w|→∞

∫
C
e−

q
2 |z−w|

2 |a|q(1 + |z|)q(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)q dA(z)

. lim
|w|→∞

∫
C

e−
q
2 |z−w|

2

(1 + |z|)q
dA(z) ' lim

|w|→∞
(1 + |w|)−q = 0.

ii) If 0 < q < p <∞, then by Theorem 2.3 of [12] again, Vg : Fpψm → F
q
ψm

is

bounded (compact) if and only if µ̃(t,mq) belongs to L
p
p−q (C, dA). We plan to

show that this holds if and only if g is of at most degree one and q > 2p
p+2 . To

this end, applying (3.1) and subharmonicity of |g′(w)|
pq
p−q , we infer∫

C
|g′(w)|

pq
p−q

(
1 + |w|

1 + |w|+
∣∣|w|2 + |w| −m

∣∣
) pq
p−q

dA(w)

.
∫
C

(∫
D(w,1)

|g′(z)|qe−
q
2 |z−w|

2

(
1 + |z|

1+ |z|+
∣∣|z|2+ |z|−m

∣∣
)q
dA(z)

) p
p−q

dA(w)

≤
∫
C

(∫
C
|g′(z)|qe−

q
2 |z−w|

2

(
1 + |z|

1+ |z|+
∣∣|z|2+ |z|−m

∣∣
)q
dA(z)

) p
p−q

dA(w)

'
∫
C
µ̃

p
p−q
(q,mq)(w)dA(w) <∞,

from which we conclude that g′ must be a constant. In addition, if g′ is a
nonzero constant, the above holds only if pq

p−q > 2.

Conversely, assuming that g′ ' α = constant we have∫
C
µ̃

p
p−q
(q,mq)(w)dA(w)

'
∫
C

(∫
C

(
|α|e− 1

2 |z−w|
2

(1 + |z|)
1 + |z|+

∣∣|z|2 + |z| −m
∣∣
)q
dA(z)

) p
p−q

dA(w)

.
∫
C

(∫
C

|α|qe−
q
2 |z−w|

2

(1 + |z|)q
dA(z)

) p
p−q

dA(w)

'
∫
C
|α|q(1 + |w|)−

pq
p−q dA(w) <∞,

where the last integral converges since either pq
p−q > 2 or α = 0 by our assump-

tion.
(iii) Let us now turn to the Schatten class membership of Vg. We recall that

a compact operator Vg belongs to the Schatten Sp(F2
ψm

) class if and only if the

sequence of the eigenvalues of the positive operator (V ∗g Vg)
1/2 is `p summable.
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In particular when p ≥ 2, this happens if and only if

∞∑
n=1

‖Vgen‖p(2,m) <∞(3.2)

for any orthonormal basis (en) of F2
ψm

(see [23, Theorem 1.33]). Let us assume

that Vg is compact, that is g′ is a constant. Then for p > 2, applying (3.2),
(2.5), and Hölder’s inequality, and subsequently (2.3) and (2.1), we compute

∞∑
n=1

‖Vgen‖p(2,m)

'
∞∑
n=1

(∫
C

(
|en(z)|e−ψm(z)(1 + |z|)

1 + |z|+
∣∣|z|2 + |z| −m

∣∣
)2

dA(z)

) p
2

≤
∞∑
n=1

(∫
C

|en(z)|2(1 + |z|)2

e2ψm(z)
dA(z)

) p−2
2 ∫

C

|en(z)|2e−2ψm(z)
(
1 + |z|)2

(1 + |z|+
∣∣|z|+ |z|2 −m∣∣)p dA(z)

'
∞∑
n=1

∫
C

|en(z)|2e−2ψm(z)
(
1 + |z|)2

(1 + |z|+
∣∣|z|+ |z|2 −m∣∣)p dA(z)

'
∫
C

(
1 + |z|+

∣∣|z|+ |z|2 −m∣∣)−pdA(z) <∞.

On the other hand, if p = 2 and g′ = α = constant, then

∞∑
n=1

‖Vgen‖2(2,m) '
∞∑
n=1

∫
C

(
|g′(z)||en(z)|e−ψm(z)(1 + |z|)

1 + |z|+
∣∣|z|2 + |z| −m

∣∣
)2

dA(z)

'
∫
C
|α|2

(
1 + |z|+

∣∣|z|2 + |z| −m
∣∣)−2dA(z).

The last integral above is finite if and only if α = 0, and hence g is a constant.
The same conclusion holds for the case when 0 < p < 2 by the monotonicity
property of Schatten class membership, in the sense that Sp(F2

ψm
) ⊆ S2(F2

ψm
),

for all p ≤ 2.

Remark 1. Because of Lemma 2.2, it is tempting to prove Theorem 1.1 by first
setting∫

C
|Vgf(z)|qe−qψm(z)dA(z) '

∫
C
|f(z)|q |g

′(z)|q(1 + |z|)qe−qψm(z)(
1 + |z|+

∣∣|z|+ |z|2 −m∣∣)q dA(z)

'
∫
C
|Mhf(z)|qe−qψm(z)dA(z),

where

h(z) =
|g′(z)|(1 + ||z)

1 + |z|+
∣∣|z|+ |z|2 −m∣∣ ,
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and then apply Lemma 2.3 with h as the multiplier function. Unfortunately,
this approach is not valid as the lemma on the multiplication operator can not
be directly applied; since the analyticity property of g is heavily used in its
proof, while h fails to be analytic in here.

3.1. Proof of Theorem 1.2

We note that relation (1.1) ensures that if any two of the operators are
bounded (compact), so is the third one. In view of this, Ig : Fpψm → F

q
ψm

is

bounded (compact) if both Mg and Vg are bounded (compact). By Theorem 1.1
and Lemma 2.3, this happens if and only if g is a constant function. This ob-
viously gives the sufficiency part of the conditions in the theorem. We proceed
to show that it is also necessary. First from Lemma 2.1, Cauchy–Schawarz
inequality and (2.1), observe that for each z ∈ D(w, δ) and a small positive δ;

|K(w,m)(z)| ' eψm(z)+ψm(w).

Now assuming that Ig : Fpψm → F
q
ψm

is bounded and 0 < p ≤ q < ∞. Then,

applying (2.5), (2.2) we have

eqψm(w) &
∫
C
|IgK(w,m)(z)|qe−qψm(z)dA(z)

'
∫
C

|K ′(w,m)(z)|
q|g(z)|q(1 + |z|)q(

1 + |z|+
∣∣|z|+ |z2| −m∣∣)q e−qψm(z)dA(z)

≥
∫
D(w,δ)

|K ′(w,m)(z)|
q|g(z)|q(1 + |z|)q(

1 + |z|+
∣∣|z|+ |z2| −m∣∣)q e−qψm(z)dA(z)

&
∫
D(w,δ)

eqψm(w)|ψ′m(z)|q|g(z)|q(1 + |z|)q(
1 + |z|+

∣∣|z|+ |z2| −m∣∣)q dA(z) = S1.

On the other hand ψ′m(z) ' ψm(w) for each z ∈ D(w, δ). Applying this, (3.1),
and the subharmonicity of |g|q, we estimate S1 from below as

S1 &
eqψm(w)|ψ′m(w)|q|g(w)|q(1 + |w|)q(

1 + |w|+
∣∣|w|+ |w2| −m

∣∣)q '
eqψ(w)

(
|w|+ |w|2 −m

)q
|g(w)|q(

1 + |w|+
∣∣|w|+ |w2| −m

∣∣)q ,

from which and taking further simplifications, we infer

|g(w)| . 1 + |w|
|w|+ |w|2 −m

+ 1,

and hence g is a bounded analytic function. By Liouville’s classical theorem,
g turns out to be a constant function.

3.2. Proof of Theorem 1.3

Recall that λ ∈ C belongs to the spectrum σ(T ) of a bounded operator T on
a Banach space if λI −T fails to be invertible, where I is the identity operator
on the space. The point spectrum σp(T ) of T consists of its eigenvalues. We
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now turn to the spectrum of Vg in particular, and assume that Vg is bounded
on Fpψm and hence g(z) = az2 + bz + c, a, b, c ∈ C. By linearity of integrals

we may first make a splitting λI − Vg = (λI − Vg1) − Vg2 where g1(z) = az2

and g2(z) = bz + c. A simple analysis shows that λI − Vg and λI − Vg1 are
injective maps. On the other hand, by part (i) of the result, Vg2 is compact
and hence σ(Vg2) = {0}. Thus, we shall investigate the case with Vg1 . We may
first observe that if λ 6= 0, then the equation λf − Vgf = h has the unique
analytic solution

f(z) = (λI − Vg1)−1h(z) =
1

λ
h(0)e

g1(z)
λ +

1

λ
e
g1(z)
λ

∫ z

0

e−
g1(w)
λ h′(w)dA(w),

(3.3)

where I is the identity operator. This can easily be seen by solving an initial
valued first order linear ordinary differential equation

λy′ − g′1y = h′, λf(0) = h(0).

Recall that (λI − Vg1)−1h(z) = R(g1,λ)h(z) is the Resolvent operator of Vg1 at
λ. It follows that λ ∈ C belongs to the resolvent of Vg1 whenever R(g1,λ) is a
bounded operator. Since we assumed that Vg1 is bounded and as Fpψm contain

the constants, setting h = 1 in (3.3) shows that R(g1,λ)1 = eg1(z)/λ ∈ Fpψm for
each λ in the resolvent set of Vg1 . From this, we obviously deduce

σ(Vg1) ⊇ {0} ∪ {λ ∈ C \ {0} : eg1(z)/λ /∈ Fpψm}.

On the other hand, if |λ| > 2|a|, then we set polar coordinates for z = reiθ, a =
|a|eiθ1 , λ = |λ|eiθ2 , and estimate∫

C
|R(g1,λ)1(z)|pe−pψm(z)dA(z) =

∫
C
ep<
(
az2

λ

)
−pψm(z)dA(z)

=

∫ ∞
0

∫ 2π

0

ep
(
|a|
|λ| cos(θ+θ1−θ1)−

1
2

)
r2+mp log(1+r)rdθdr

.
∫ ∞
0

ep
(
|a|
|λ|−

1
2

)
r2+(m+1)p log(1+r)dr .

∫ ∞
0

ep
(
|a|
|λ|−

1
2

)
r2+p(m+1)rdr

≤

√
2π|λ|

p(2|a| − |λ|)
e

2|λ|(pm+p)2

p(2|a|−|λ|) <∞.

This means that the spectrum of Vg1 contains the closed disc D(0, 2|a|). We
remain to show that R(g1,λ) is bounded for all λ ∈ C such that |λ| ≤ 2|a|. To
this end, applying Lemma 2.2 and Lemma 2.4, we have∫

C
|R(g1,λ)f(z)|pe−pψm(z)dA(z)

≤ 2p|f(0)|p
∫
C
|e
g1(z)
λ |pe−pψm(z)dA(z)
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+ 2p
∫
C

∣∣∣∣e− g1(z)
λ

∫ z

0

e−
g1(w)
λ f ′(w)dA(w)

∣∣∣∣pe−pψm(z)dA(z)

. ‖f‖p(p,m) +

∫
C

|f ′(z)|pe−pψ(z)

(1 + ψ′m(z))
dA(z) . ‖f‖p(p,m),

and completes the proof of part (i).
The proof of part (ii) is rather straightforward. If λ belongs to the point

spectrum of Ig, then there exists a nonzero function f ∈ Fpψm for which

λf(z) =

∫ z

0

cf ′(w)dA(w).(3.4)

It follows from this that λf ′(z) = cf ′(z) which holds either λ = c or f ′ = 0.
The later leads to a contradiction because of the relation in (3.4). Thus, we
must have λ = c. This implies

{c} ⊆ σ(Ig).

To show the converse inclusion, it suffices to show that the resolvent operator
R(λ,g) of Ig at point λ is bounded on Fpψm for each λ 6= c. To this end, from
the relation λf − Igf = h, it follows that

λf ′ − cf ′ = h′.

Solving this linear ordinary differential equation gives the explicit expression
for the resolvent operator

f(z) = Rλh(z) =
h(z)

λ− c
,

which obviously is bounded on Fpψm and completes the required proof.

3.3. The differential operator D

The differential operator Df = f ′ has become a prototype example of un-
bounded operators in many Banach spaces. Its unboundedness in the classical
Flock spaces with Gaussian weight and in weighted Fock spaces where the
weight decays faster than the Gaussian weight was recently verified in [17].
Another natural question would be then what happens when the weight decays
slower than the Gaussian weight in which the Fock–Sobolev spaces constitute
typical examples. In what follows we will verify that the action of the operator
remains unbounded. If D : Fpψm → F

q
ψm

were indeed bounded, then applying

D to the sequence of the reproducing kernels, using estimates (2.1) and (2.2),
and subharmonicity of |K ′(w,m)|

q, we would find

eqψm(w) & ‖K ′(w,m)‖
q
(p,m)‖D‖

q ≥
∫
C
|K ′(w,m)(z)|

qe−qψm(z)dA(z)

≥
∫
D(w,1)

|K ′(w,m)(z)|
qe−qψm(z)dA(z)

& |K ′(w,m)(w)|qe−qψm(w) ' ψ′(w)eqψm(w)
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and from this we conclude ||w| + |w|2 − m| . 1 + |w|, resulting the desired
contradiction when |w| → ∞.
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