• Title/Summary/Keyword: InAs quantum dots

Search Result 277, Processing Time 0.023 seconds

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method (MEE법으로 성장한 InAs/GaAs 양자점의 발광특성)

  • Oh, Jae Won;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • The luminescence properties of InAs/GaAs quantum dots (QDs) grown by a migration enhanced epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The MEE method supplies materials in a series of alternate depositions with migration enhancing time between each deposition. After In source was supplied for 9.3 s, the growth was interrupted for 5 s. Subsequently, As source was open for 3 (AT3), 4(AT4), 6 (AT6), or 9 s (AT9), and the growth was interrupted for 5 s again. This growth sequence was repeated 3 times for the growth of InAs QDs. The PL peak of the AT3 was 1,140 nm and the PL intensity was very weak compared with that of the other three samples. The PL peak of all samples except the AT3 sample was 1,118 nm, which is blueshifted from 1,140 nm, and the PL intensity was increased compared to that of the AT3. These results can be explained by the increased QD density and the improved QD uniformity. The AT6 sample showed the strongest PL intensity and the narrowest full width at half maximum. The PL decay time of AT6 increased with increasing emission wavelength from 940 to 1,126 nm, reaching a maximum decay time of 1.09 ns at 1,126 nm, and then decreased as the emission wavelength was increased further.

Carrier Dynamics of P-modulation Doped In(Ga)A/InGaAsP Quantum Dots (P 변조도핑한 In(Ga)As/InGaAsP 양자점에 대한 운반자 동역학)

  • Jang, Y.D.;Park, J.;Lee, D.;Hong, S.U.;Oh, D.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.301-307
    • /
    • 2006
  • We have investigated optical properties of p-modulation doped In(Ga)As quantum dots (QDs) on InP substrate with a comparison with the undoped QDs. Photoluminscence (PL) intensity of doped QDs at 10 K was about 10 times weaker than that of undoped QD sample. The decay time of doped QD sample at its PL peak, obtained from the time-resolved PL (TR-PL) experiment at 10 K, was very fast compared to that of undoped sample. We interpret that this fast decay time of the doped QD sample comes from the addition of non-radiative recombination paths, which are originated from the doping-related defects.

Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method (광화학적 방법을 통한 InP계 양자점 표면결함 부동태화 연구)

  • Kim, Doyeon;Park, Hyun-Su;Cho, Hye Mi;Kim, Bum-Sung;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.489-493
    • /
    • 2017
  • In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

TEM Study on the Growth Characteristics of Self-Assembled InAs/GaAs Quantum Dots

  • Kim, Hyung-Seok;Suh, Ju-Hyung;Park, Chan-Gyung;Lee, Sang-Jun;Noh, Sam-Gyu;Song, Jin-Dong;Park, Yong-Ju;Lee, Jung-Il
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.35-40
    • /
    • 2006
  • Self-assembled InAs/GaAs quantum dots (QDs) were grown by the atomic layer epitaxy (ALE) and molecular beam epitaxy (MBE) techniques, The structure and the thermal stability of QDs have been studied by high resolution electron microscopy with in-situ heating experiment capability, The ALE and MBE QDs were found to form a hemispherical structure with side facets in the early stage of growth, Upon capping by GaAs layer, however, the apex of QDs changed to a flat one. The ALE QDs have larger size and more regular shape than those of MBE QDs. The QDs collapse due to elevated temperature was observed directly in atomic scale, In situ heating experiment within TEM revealed that the uncapped QDs remained stable up to $580^{\circ}C$, However, at temperature above $600^{\circ}C$, the QDs collapsed due to the diffusion and evaporation of In and As from the QDs, The density of the QDs decreased abruptly by this collapse and most of them disappeared at above $600^{\circ}C$.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Controlling Quantum Confinement and Magnetic Doping of Cesium Lead Halide Perovskite Nanocrystals

  • Dong, Yitong;Parobek, David;Son, Dong Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.515-526
    • /
    • 2018
  • Cesium lead halide ($CsPbX_3$) nanocrystals have emerged as a new family of semiconductor nanomaterials that can outperform existing semiconductor nanocrystals owing to their superb optical and charge transport properties. Although these materials are expected to have many superior properties, control of the quantum confinement and isoelectronic magnetic doping, which can greatly enhance their optical, electronic, and magnetic properties, has faced significant challenges. These obstacles have hindered full utilization of the benefits that can be obtained by using $CsPbX_3$ nanocrystals exhibiting strong quantum confinement or coupling between exciton and magnetic dopants, which have been extensively explored in many other semiconductor quantum dots. Here, we review progress made during the past several years in tackling the issues of introducing controllable quantum confinement and doping of $Mn^{2+}$ ions as the prototypical magnetic dopant in colloidal $CsPbX_3$ nanocrystals.

Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide

  • Jang, Min-Ho;Ha, Hyun Dong;Seo, Tae Seok;Cho, Yong-Hoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.111-116
    • /
    • 2015
  • The graphene oxide (GO) and graphene oxide quantum dots (GOQDs), which have gained research interest as new types of light-emitting materials, were synthesized by the modified Hummers method for oxidation of graphite flake and graphite nanoparticle. The optical properties of GO and GOQDs have been compared by mean of photoluminescence (PL), PL excitation (PLE), UV-vis absorbance, and time-resolved PL. The GO have an absorption peak at 229 nm and shoulder part at 310 nm, whereas the GOQDs show broad absorption with a gradual change up without any absorption peaks. The PL emission of GOQDs and GO showed the green color at 520 nm and the red color at 690 nm, respectively. The red emission of GO showed faster PL decay time than the green emission of GOQDs. In particular, the temporal PL profile of the GO showed redshift from 560 nm to 660 nm after the pump event.