DOI QR코드

DOI QR Code

Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method

광화학적 방법을 통한 InP계 양자점 표면결함 부동태화 연구

  • Kim, Doyeon (Department of Energy Engineering, Dankook University) ;
  • Park, Hyun-Su (Department of Energy Engineering, Dankook University) ;
  • Cho, Hye Mi (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Bum-Sung (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 김도연 (단국대학교 에너지공학과) ;
  • 박현수 (단국대학교 에너지공학과) ;
  • 조혜미 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2017.12.18
  • Accepted : 2017.12.21
  • Published : 2017.12.28

Abstract

In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.

Keywords

References

  1. S. A. Empedocles and M. G. Bawendi: Science, 278 (1997) 2114. https://doi.org/10.1126/science.278.5346.2114
  2. S. K. Poznyak, D. V. Talapin, E. V. Shevchenko and H. Weller: Nano Lett., 4 (2004) 693. https://doi.org/10.1021/nl049713w
  3. A. Narayanaswamy, L. F. Feiner, A. Meijerink and P. J. Van der Zaag: ACS Nano, 3 (2009) 2539. https://doi.org/10.1021/nn9004507
  4. M. Yu, G. W. Fernando, R. Li, F. Papadimitrakopoulos, N. Shi and R. Ramprasad: Appl. Phys. Lett., 88 (2006) 231910. https://doi.org/10.1063/1.2209195
  5. N. S. A. Eom, T. S. Kim, Y. H. Choa and B. S. Kim: Korean J. Mater. Res., 22 (2012) 140. https://doi.org/10.3740/MRSK.2012.22.3.140
  6. T. A. DeTemple and C. M. Herzinger: IEEE J. Quantum Electron., 29 (1993) 1246. https://doi.org/10.1109/3.236138
  7. P. F. Trwoga, A. J. Kenyon and C. W. Pitt: J. Appl. Phys., 83 (1998) 3789. https://doi.org/10.1063/1.366608
  8. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463. https://doi.org/10.1021/jp971091y
  9. S. A. Majetich and A. C. Carter: J. Phys. Chem., 97 (1993) 8727. https://doi.org/10.1021/j100136a013
  10. A. M. Derfus, W. C. Chan and S. N. Bhatia: Nano Lett., 4 (2004) 11. https://doi.org/10.1021/nl0347334
  11. Y. T. Kwon, Y. M. Choi, K. H. Kim, C. G. Lee, K. J. Lee, B. S. Kim and Y. H. Choa: Surf. Coat. Technol., 259 (2014) 83. https://doi.org/10.1016/j.surfcoat.2014.05.061
  12. Y. T. Kwon, N. S. A. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee and Y. H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636. https://doi.org/10.1166/jnn.2014.9385
  13. H. S. Park, D. W. Jeong, B. S. Kim, S. Y. Joo, C. G. Lee and W. B. Kim: J. Korean Powder Metall. Inst., 24 (2017) 1. https://doi.org/10.4150/KPMI.2017.24.1.1
  14. S. Y. Joo, D. W. Jeong, C. G. Lee, B. S. Kim, H. S. Park and W. B. Kim: J. Appl. Phys., 121 (2017) 223102. https://doi.org/10.1063/1.4985065
  15. H. Fu and A. Zunger: Phys. Rev. B, 56 (1997) 1496. https://doi.org/10.1103/PhysRevB.56.1496
  16. H. W. Seo, D. W. Jeong, M. Y. Kim, S. H. Hyun, J. S. On and B. S. Kim: J. Korean Powder Metall. Inst., 24 (2017) 321. https://doi.org/10.4150/KPMI.2017.24.4.321
  17. W. W. Zhao, Z. Y. Ma, P. P. Yu, X. Y. Dong, J. J. Xu and H. Y. Chen: Anal. Chem., 84 (2011) 917.
  18. I. C. Baek, S. I. Seok, N. C. Pramanik, S. Jana, M. A. Lim, B. Y. Ahn and Y. J. Jeong: J. Colloid Interface Sci., 310 (2007) 163. https://doi.org/10.1016/j.jcis.2007.01.017
  19. T. Nishio, T. Shimizu, J. C. Kwak and A. Minakata: Biophys. Chem., 104 (2003) 501. https://doi.org/10.1016/S0301-4622(03)00039-5