Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.2.92

Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method  

Oh, Jae Won (Department of Physics, Kangwon National University)
Byun, Hye Ryoung (Department of Physics, Kangwon National University)
Ryu, Mee-Yi (Department of Physics, Kangwon National University)
Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.2, 2013 , pp. 92-97 More about this Journal
Abstract
The luminescence properties of InAs/GaAs quantum dots (QDs) grown by a migration enhanced epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The MEE method supplies materials in a series of alternate depositions with migration enhancing time between each deposition. After In source was supplied for 9.3 s, the growth was interrupted for 5 s. Subsequently, As source was open for 3 (AT3), 4(AT4), 6 (AT6), or 9 s (AT9), and the growth was interrupted for 5 s again. This growth sequence was repeated 3 times for the growth of InAs QDs. The PL peak of the AT3 was 1,140 nm and the PL intensity was very weak compared with that of the other three samples. The PL peak of all samples except the AT3 sample was 1,118 nm, which is blueshifted from 1,140 nm, and the PL intensity was increased compared to that of the AT3. These results can be explained by the increased QD density and the improved QD uniformity. The AT6 sample showed the strongest PL intensity and the narrowest full width at half maximum. The PL decay time of AT6 increased with increasing emission wavelength from 940 to 1,126 nm, reaching a maximum decay time of 1.09 ns at 1,126 nm, and then decreased as the emission wavelength was increased further.
Keywords
InAs; Quantum dots; Photoluminescence; Time-resolved photoluminescence;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. Qiu, D. Uhl, R. Chacon, and R. Q. Yang, Appl. Phys. Lett. 83, 1704 (2003).   DOI   ScienceOn
2 P. Bhattacharya, Z. Mi, J. Yang, D. Basu, and D. Saha, J. Crystal Growth 311, 1625 (2009).   DOI   ScienceOn
3 G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 13, 230 (2000).
4 J. Kim, S. Ha, C. Yang, J. Lee, S. Park, W. J. Choi, and E. Yoon, J. Korean Vac. Soc. 19, 217 (2010).   DOI   ScienceOn
5 H. J. Lee, M. -Y. Ryu, and J. S. Kim, J. Korean Vac. Soc. 18, 474 (2009).   DOI   ScienceOn
6 H. Y. Kim, M. -Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012).   DOI   ScienceOn
7 H. J. Lee, M. -Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010).   DOI   ScienceOn
8 J. W. Oh, S. R. Kwon, M. -Y. Ryu, B. Jo, and J. S. Kim, J. Korean Vac. Soc. 20, 442 (2011).   DOI   ScienceOn
9 V. D. Dasika, J. D. Song, W. J. Choi, N. K. Cho, J. I. Lee, and R. S. Goldman, Appl. Phys. Lett. 95, 163114 (2009).   DOI   ScienceOn
10 B. Jo, C. -R. Lee, J. S. Kim, K. Pyun, S. K. Noh, J. S. Kim, J. -Y. Leem, and M. -Y. Ryu, J. Korean Phys. Soc. 60, 460 (2012).   DOI   ScienceOn
11 S. R. Kwon, M. -Y. Ryu, and J. D. Song, J. Korean Vac. Soc. 21, 342 (2012).   DOI   ScienceOn
12 N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006).   DOI   ScienceOn
13 L. Y. Karachinsky, S. Pellegrini, G. S. Buller, A. S. Shokolnik, N. Y. Gordeev, V. P. Evtikhiev, and V. B. Novikov, Appl. Phys. Lett. 84, 7 (2004).   DOI   ScienceOn
14 Y. P. Varshni, Physica 34, 149 (1967).   DOI   ScienceOn
15 O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series, III/17a (Springer, Berlin, 1982), p. 297.
16 G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maabdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink, J. Appl. Phys. 88, 7162 (2000).   DOI   ScienceOn
17 Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001).   DOI   ScienceOn