Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.11

Controlling Quantum Confinement and Magnetic Doping of Cesium Lead Halide Perovskite Nanocrystals  

Dong, Yitong (Department of Chemistry, Texas A&M University)
Parobek, David (Department of Chemistry, Texas A&M University)
Son, Dong Hee (Department of Chemistry, Texas A&M University)
Publication Information
Abstract
Cesium lead halide ($CsPbX_3$) nanocrystals have emerged as a new family of semiconductor nanomaterials that can outperform existing semiconductor nanocrystals owing to their superb optical and charge transport properties. Although these materials are expected to have many superior properties, control of the quantum confinement and isoelectronic magnetic doping, which can greatly enhance their optical, electronic, and magnetic properties, has faced significant challenges. These obstacles have hindered full utilization of the benefits that can be obtained by using $CsPbX_3$ nanocrystals exhibiting strong quantum confinement or coupling between exciton and magnetic dopants, which have been extensively explored in many other semiconductor quantum dots. Here, we review progress made during the past several years in tackling the issues of introducing controllable quantum confinement and doping of $Mn^{2+}$ ions as the prototypical magnetic dopant in colloidal $CsPbX_3$ nanocrystals.
Keywords
Lead halide perovskite; Quantum dot; Magnetic doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. D. Sarma, and N. Pradhan, "Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale Synthesis," J. Phys. Chem. Lett., 1 [9] 1454-58 (2010).   DOI
2 R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, "Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots," Science, 325 [5943] 973-76 (2009).   DOI
3 D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon, and D. H. Son, "Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals," Nano Lett., 16 [12] 7376-80 (2016).   DOI
4 D. Parobek, Y. Dong, T. Qiao, and D. H. Son, "Direct Hot- Injection Synthesis of Mn-Doped $CsPbBr_3$ Nanocrystals," Chem. Mater., 30 [9] 2939-44 (2018).   DOI
5 W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, and V. I. Klimov, "$Mn^{2+}$-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content," J. Am. Chem. Soc., 138 [45] 14954-61 (2016).   DOI
6 Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, "Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions," J. Am. Chem. Soc., 137 [32] 10276-81 (2015).   DOI
7 G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion- Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, I)," Nano Lett., 15 [8] 5635-40 (2015).   DOI
8 N. Pradhan and X. G. Peng, "Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry," J. Am. Chem. Soc., 129 [11] 3339-47 (2007).   DOI
9 J. Aneesh, A. Swarnkar, V. Kumar Ravi, R. Sharma, A. Nag, and K. V. Adarsh, "Ultrafast Exciton Dynamics in Colloidal $CsPbBr_3$ Perovskite Nanocrystals: Biexciton Effect and Auger Recombination," J. Phys. Chem. C, 121 [8] 4734-39 (2017).   DOI
10 J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, "2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets," J. Phys. Chem. Lett., 8 [6] 1161-68 (2017).   DOI
11 A. Shinde, R. Gahlaut, and S. Mahamuni, "Low-Temperature Photoluminescence Studies of $CsPbBr_3$ Quantum Dots," J. Phys. Chem. C, 121 [27] 14872-78 (2017).   DOI
12 H. Utzat, K. E. Shulenberger, O. B. Achorn, M. Nasilowski, T. S. Sinclair, and M. G. Bawendi, "Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution," Nano Lett., 17 [11] 6838-46 (2017).   DOI
13 M. Koolyk, D. Amgar, S. Aharon, and L. Etgar, "Kinetics of Cesium Lead Halide Perovskite Nanoparticle Growth; Focusing and De-Focusing of Size Distribution," Nanoscale, 8 [12] 6403-9 (2016).   DOI
14 M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stoferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Raino, and A. L. Efros, "Bright Triplet Excitons in Caesium Lead Halide Perovskites," Nature, 553 189-93 (2018).   DOI
15 M. C. Brennan, J. E. Herr, T. S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, and M. Kuno, "Origin of the Size-Dependent Stokes Shift in $CsPbBr_3$ Perovskite Nanocrystals," J. Am. Chem. Soc., 139 [35] 12201-8 (2017).   DOI
16 J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, "Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of $CsPbBr_3$ Perovskite Quantum Dots," J. Phys. Chem. Lett., 8 [10] 2316-21 (2017).   DOI
17 S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, and X. Chen, "Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes," J. Am. Chem. Soc., 139 [33] 11443-50 (2017).   DOI
18 Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, "Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies," J. Am. Chem. Soc., 137 [51] 16008-11 (2015).   DOI
19 Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, "Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control," J. Am. Chem. Soc., 138 [3] 1010-16 (2016).   DOI
20 F. Li, Z. Xia, C. Pan, Y. Gong, L. Gu, Q. Liu, and J. Z. Zhang, "High $Br^-$ Content $CsPb(Cl_yBr_{1-y))_3$ Perovskite Nanocrystals with Strong $Mn^{2+}$ Emission through Diverse Cation/Anion Exchange Engineering," ACS Appl. Mater. Interfaces, 10 [14] 11739-46 (2018).   DOI
21 K. Xu and A. Meijerink, "Tuning Exciton-$Mn^{2+}$ Energy Transfer in Mixed Halide Perovskite Nanocrystals," Chem. Mater., 30 [15] 5346-52 (2018).   DOI
22 R. Beaulac, P. I. Archer, J. van Rijssel, A. Meijerink, and D. R. Gamelin, "Exciton Storage by $Mn^{2+}$ in Colloidal $Mn^{2+}$- Doped CdSe Quantum Dots," Nano Lett., 8 [9] 2949-53 (2008).   DOI
23 A. Dutta, S. K. Dutta, S. Das Adhikari, and N. Pradhan, "Tuning the Size of $CsPbBr_3$ Nanocrystals: All at One Constant Temperature," ACS Energy Lett., 3 [2] 329-34 (2018).   DOI
24 A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, and Y. Liu, "Insight into the Ligand-Mediated Synthesis of Colloidal $CsPbBr_3$ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors," ACS Nano, 10 [8] 7943-54 (2016).   DOI
25 S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand- Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature," ACS Nano, 10 [3] 3648-57 (2016).   DOI
26 G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, "Role of Acid- Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals," ACS Nano, 12 [2] 1704-11 (2018).   DOI
27 Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi, and D. H. Son, "Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium," Nano Lett., 18 [6] 3716-22 (2018).   DOI
28 D. Parobek, Y. Dong, T. Qiao, D. Rossi, and D. H. Son, "Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals," J. Am. Chem. Soc., 139 [12] 4358-61 (2017).   DOI
29 W. D. Rice, W. Liu, V. Pinchetti, D. R. Yakovlev, V. I. Klimov, and S. A. Crooker, "Direct Measurements of Magnetic Polarons in $Cd_{1-x}Mn_xSe$ Nanocrystals from Resonant Photoluminescence," Nano Lett., 17 [5] 3068-75 (2017).   DOI
30 H.-Y. Chen, S. Maiti, and D. H. Son, "Doping Location- Dependent Energy Transfer Dynamics in Mn-Doped CdS/ZnS Nanocrystals," ACS Nano, 6 [1] 583-91 (2012).   DOI
31 D. Rossi, D. Parobek, Y. Dong, and D. H. Son, "Dynamics of Exciton-Mn Energy Transfer in Mn-Doped $CsPbCl_3$ Perovskite Nanocrystals," J. Phys. Chem. C, 121 [32] 17143-49 (2017).   DOI
32 K. Xu, C. C. Lin, X. Xie, and A. Meijerink, "Efficient and Stable Luminescence from $Mn^{2+}$ in Core and Core-Isocrystalline Shell $CsPbCl_3$ Perovskite Nanocrystals," Chem. Mater., 29 [10] 4265-72 (2017).   DOI
33 Y. Dong, J. Choi, H.-K. Jeong, and D. H. Son, "Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis," J. Am. Chem. Soc., 137 [16] 5549-54 (2015).
34 G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong, and H. Song, "Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties," Nano Lett., 17 [12] 8005-11 (2017).   DOI
35 Y. Shen, M. Y. Gee, R. Tan, P. J. Pellechia, and A. B. Greytak, "Purification of Quantum Dots by Gel Permeation Chromatography and the Effect of Excess Ligands on Shell Growth and Ligand Exchange," Chem. Mater., 25 [14] 2838-48 (2013).   DOI
36 H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, and B. Yang, "$CsPb_xMn_{1-x}Cl_3$ Perovskite Quantum Dots with High Mn Substitution Ratio," ACS Nano, 11 [2] 2239-47 (2017).   DOI
37 S. Das Adhikari, S. K. Dutta, A. Dutta, A. K. Guria, and N. Pradhan, "Chemically Tailoring the Dopant Emission in Manganese-Doped $CsPbCl_3$ Perovskite Nanocrystals," Angew. Chem. Int. Ed., 56 [30], 8746-50 (2017).   DOI
38 W. J. Mir, M. Jagadeeswararao, S. Das, and A. Nag, "Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets," ACS Energy Lett., 2 [3] 537-43 (2017).   DOI
39 S. Das Adhikari, A. Dutta, S. K. Dutta, and N. Pradhan, "Layered Perovskites $L_2(Pb_{1-x}Mn_x)Cl_4$ to Mn-Doped $CsPb-Cl_3$ Perovskite Platelets," ACS Energy Lett., 3 [6] 1247-53 (2018).   DOI
40 X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, "Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer," Nano Lett., 16 [2] 1415-20 (2016).   DOI
41 G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, and Z.-K. Tan, "Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method," Adv. Mater., 28 [18] 3528-34 (2016).   DOI
42 Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, and L. Manna, "Strongly Emissive Perovskite Nanocrystal Inks for High-Voltage Solar Cells," Nat. Energy 2 16194 (2016).
43 A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, and D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, "Quantum Dot-Induced Phase Stabilization of ${\alpha}$-$CsPbI_3$ Perovskite for High-Efficiency Photovoltaics," Science, 354 [6308] 92-5 (2016).   DOI
44 P. K. Santra and P. V. Kamat, "Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%," J. Am. Chem. Soc., 134 [5] 2508-11 (2012).   DOI
45 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc. 131 [17] 6050-51 (2009).   DOI
46 G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, "Terahertz Conductivity within Colloidal $CsPbBr_3$ Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths," Nano Lett., 16 [8] 4838-48 (2016).   DOI
47 S. ten Brinck and I. Infante, "Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals," ACS Energy Lett., 1 [6] 1266-72 (2016).   DOI
48 R. E. Brandt, J. R. Poindexter, P. Gorai, R. C. Kurchin, R. L. Z. Hoye, L. Nienhaus, M. W. B. Wilson, J. A. Polizzotti, R. Sereika, R. Zaltauskas, L. C. Lee, J. L. MacManus- Driscoll, M. Bawendi, V. Stevanović, and T. Buonassisi, "Searching for "Defect-Tolerant" Photovoltaic Materials: Combined Theoretical and Experimental Screening," Chem. Mater., 29 [11] 4667-74 (2017).   DOI
49 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., 15 [6] 3692-96 (2015).   DOI
50 P. V. Kamat, "Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics," J. Phys. Chem. Lett., 4 [6] 908-18 (2013).   DOI
51 S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, "Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics," Nat. Mater., 4 138 (2005).   DOI
52 A. J. Nozik, "Quantum Dot Solar Cells," Phys. E, 14 [1-2] 115-20 (2002).   DOI
53 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, "Hybrid Passivated Colloidal Quantum Dot Solids," Nat. Nanotechnol., 7 577 (2012).   DOI
54 I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, "Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution," Science, 310 [5747] 462-5 (2005).   DOI
55 J.-H. Choi, H. Wang, S. J. Oh, T. Paik, P. Sung, J. Sung, X. Ye, T. Zhao, B. T. Diroll, C. B. Murray, C. R. Kagan, "Exploiting the Colloidal Nanocrystal Library to Construct Electronic Devices," Science, 352 [6282] 205-8 (2016).   DOI
56 C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, "Building Devices from Colloidal Quantum Dots," Science, 353 [6302] aac5523 (2016).
57 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum Dots for Live Cells, in vivo Imaging, and Diagnostics," Science 307 [5709] 538-44 (2005).   DOI
58 I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum Dot Bioconjugates for Imaging, Labelling and Sensing," Nat. Mater., 4 [6] 435-46 (2005).   DOI
59 X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, "In vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots," Nat. Biotechnol., 22 [8] 969-76 (2004).   DOI
60 A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, 271 [5251] 933-37 (1996).   DOI
61 D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, "High-Quality Manganese-Doped ZnSe Nanocrystals," Nano Lett., 1 [1] 3-7 (2001).   DOI
62 D. J. Norris, A. L. Efros, and S. C. Erwin, "Doped Nanocrystals," Science, 319 [5871] 1776-79 (2008).   DOI