Carrier Dynamics of P-modulation Doped In(Ga)A/InGaAsP Quantum Dots

P 변조도핑한 In(Ga)As/InGaAsP 양자점에 대한 운반자 동역학

  • Jang, Y.D. (Department of Physics, Chungnam National University) ;
  • Park, J. (Department of Physics, Chungnam National University) ;
  • Lee, D. (Department of Physics, Chungnam National University) ;
  • Hong, S.U. (Electronics and Telecommunication Research Institute) ;
  • Oh, D.K. (Electronics and Telecommunication Research Institute)
  • Published : 2006.05.01

Abstract

We have investigated optical properties of p-modulation doped In(Ga)As quantum dots (QDs) on InP substrate with a comparison with the undoped QDs. Photoluminscence (PL) intensity of doped QDs at 10 K was about 10 times weaker than that of undoped QD sample. The decay time of doped QD sample at its PL peak, obtained from the time-resolved PL (TR-PL) experiment at 10 K, was very fast compared to that of undoped sample. We interpret that this fast decay time of the doped QD sample comes from the addition of non-radiative recombination paths, which are originated from the doping-related defects.

P-modulation doping된 In(Ga)As/InGaAsP 양자점에서의 decay time 특성을 undoped 양자점 시료와의 비교를 통해 살펴보았다. 10 K 에서의 photoluminescence (PL) 세기는 doping 된 양자점이 doping되지 않은 양자점에 비해 약 10배 정도 약하게 나왔다. 또한 Time resolved PL (TR-PL) 실험을 통해 얻은 양자점 시료의 기저상태 PL peak 에서의 decay time은 doping된 양자점이 doping 되지 않은 양자점에 비해 매우 짧게 나왔다. 이러한 PL 세기와 decay time 특성을 통해서 본 연구에서 측정한 doping 된 양자점의 경우에는 doping에 의해 결함이 증가하게 되고, 그로 인해 운반자의 비발광 경로가 증가하게 되어 doping 된 양자점의 경우에 decay time이 짧게 나타나는 것으로 분석하였다.

Keywords

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982) https://doi.org/10.1063/1.92959
  2. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, Electron. Lett. 36, 1283 (2000) https://doi.org/10.1049/el:20000909
  3. T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photon. Technol. Lett. 11, 1527 (1999) https://doi.org/10.1109/68.806834
  4. F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, Appl. Phys. Lett. 76, 556 (2000) https://doi.org/10.1063/1.125816
  5. R. Krebs, F. Klopf, S. Rennon, J. P. Reithmaier, and A. Forchel, Electron. Lett. 37, 1223 (2001) https://doi.org/10.1049/el:20010841
  6. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, Electron. Lett. 40, 1412 (2004) https://doi.org/10.1049/el:20046692
  7. J. W. Jang, S. H. Lee, I. C. Lee, W. G. Jeong, R. Stevensen, P. D. Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett. 85, 3675 (2004) https://doi.org/10.1063/1.1812365
  8. J. S. Kim, J. H. Lee, S. U. Hong, W. S. Han, H. S. Kwack, C. W. Lee, and D. K. Oh, IEEE Photon. Technol. Lett. 16, 1607 (2004) https://doi.org/10.1109/LPT.2004.828494
  9. O. B. Shchekin and D. G. Deppe, Appl. Phys. Lett. 80, 2758 (2002) https://doi.org/10.1063/1.1469212
  10. O. B. Shchekin and D. G. Deppe, Appl. Phys. Lett. 80, 3277 (2002) https://doi.org/10.1063/1.1476708
  11. Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, Phys. Rev. Lett. 82, 4114 (1999) https://doi.org/10.1103/PhysRevLett.82.4114
  12. R. Oulton, J. J. Finley, A. I. Tartakovskii, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, A. Vasanelli, R. Ferreira, and G. Bastard, Phys. Rev. B 68, 235301 (2003) https://doi.org/10.1103/PhysRevB.68.235301
  13. J. Siegert, S. Marcinkevicius, and Q. X. Zhao, Phys. Rev. B 72, 085316 (2005) https://doi.org/10.1103/PhysRevB.72.085316
  14. Semiconductors: Group IV Elements and III–V Compounds (Springer, Berlin, 1991)
  15. Y. D. Jang, E. G. Lee, J. S. Yim, D. Lee, W. G. Jeong, S. H. Pyun, and J. W. Jang, Appl. Phys. Lett. (Accepted)