Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.6.489

Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method  

Kim, Doyeon (Department of Energy Engineering, Dankook University)
Park, Hyun-Su (Department of Energy Engineering, Dankook University)
Cho, Hye Mi (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Kim, Bum-Sung (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.24, no.6, 2017 , pp. 489-493 More about this Journal
Abstract
In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.
Keywords
InP; Quantum dots (QDs); Surface passivation; Photochemical method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. A. Empedocles and M. G. Bawendi: Science, 278 (1997) 2114.   DOI
2 S. K. Poznyak, D. V. Talapin, E. V. Shevchenko and H. Weller: Nano Lett., 4 (2004) 693.   DOI
3 A. Narayanaswamy, L. F. Feiner, A. Meijerink and P. J. Van der Zaag: ACS Nano, 3 (2009) 2539.   DOI
4 M. Yu, G. W. Fernando, R. Li, F. Papadimitrakopoulos, N. Shi and R. Ramprasad: Appl. Phys. Lett., 88 (2006) 231910.   DOI
5 N. S. A. Eom, T. S. Kim, Y. H. Choa and B. S. Kim: Korean J. Mater. Res., 22 (2012) 140.   DOI
6 T. A. DeTemple and C. M. Herzinger: IEEE J. Quantum Electron., 29 (1993) 1246.   DOI
7 P. F. Trwoga, A. J. Kenyon and C. W. Pitt: J. Appl. Phys., 83 (1998) 3789.   DOI
8 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi: J. Phys. Chem. B, 101 (1997) 9463.   DOI
9 S. A. Majetich and A. C. Carter: J. Phys. Chem., 97 (1993) 8727.   DOI
10 A. M. Derfus, W. C. Chan and S. N. Bhatia: Nano Lett., 4 (2004) 11.   DOI
11 Y. T. Kwon, Y. M. Choi, K. H. Kim, C. G. Lee, K. J. Lee, B. S. Kim and Y. H. Choa: Surf. Coat. Technol., 259 (2014) 83.   DOI
12 Y. T. Kwon, N. S. A. Eom, Y. M. Choi, B. S. Kim, T. S. Kim, C. G. Lee and Y. H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636.   DOI
13 H. S. Park, D. W. Jeong, B. S. Kim, S. Y. Joo, C. G. Lee and W. B. Kim: J. Korean Powder Metall. Inst., 24 (2017) 1.   DOI
14 S. Y. Joo, D. W. Jeong, C. G. Lee, B. S. Kim, H. S. Park and W. B. Kim: J. Appl. Phys., 121 (2017) 223102.   DOI
15 H. Fu and A. Zunger: Phys. Rev. B, 56 (1997) 1496.   DOI
16 T. Nishio, T. Shimizu, J. C. Kwak and A. Minakata: Biophys. Chem., 104 (2003) 501.   DOI
17 H. W. Seo, D. W. Jeong, M. Y. Kim, S. H. Hyun, J. S. On and B. S. Kim: J. Korean Powder Metall. Inst., 24 (2017) 321.   DOI
18 W. W. Zhao, Z. Y. Ma, P. P. Yu, X. Y. Dong, J. J. Xu and H. Y. Chen: Anal. Chem., 84 (2011) 917.
19 I. C. Baek, S. I. Seok, N. C. Pramanik, S. Jana, M. A. Lim, B. Y. Ahn and Y. J. Jeong: J. Colloid Interface Sci., 310 (2007) 163.   DOI