• Title/Summary/Keyword: Improved loop stability

Search Result 77, Processing Time 0.028 seconds

Feedback Loop Design for Micro Gyroscope

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.4-39
    • /
    • 2002
  • This paper presents a design and implementation of a PID feedback control loop for micro gyroscope. The feedback control loop improves the gyroscope performance such as linearity, bandwidth, and bias stability for micro gyroscope which is basically a high-Q system and exhibits a low performance with an open loop control. The designed and implemented feed-back control loop is applied to the SNU-Bosch MEMS gyroscope to demonstrate the improvement with the feedback control loop. The bandwidth is improved to 60Hz from 25Hz of open loop control. The linearity becomes 0.5% from 1%. The bias stability is improved to 0.03 deg/sec from 0.06 deg/sec.

  • PDF

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers (가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어)

  • Park, Yong-Hwa;Park, Sang-Jun;Choi, Byung-Doo;Ko, Hyoung-Ho;Song, Tae-Yong;Lim, Genu-Won;Huh, Kun-Soo;Park, Jahng-Hyon;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

A New Phase-Locked Loop System with the Controllable Output Phase and Lock-up Time

  • Vibunjarone, Vichupong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1836-1840
    • /
    • 2003
  • This paper, we propose a new phase-locked loop (PLL) system with the controllable output phase, independent from the output frequency, and lock-up time. This PLL system has a dual control loop is described, the inner loop greatly improved VCO characteristic such as faster speed response as well as higher operation bandwidth, to minimize the effect of the VCO noise and the power supply variation and also get better linearity of VCO output. The main loop is the heart of this PLL which greatly improved the output frequency instability due to the external high frequency noise coupling to the input reference frequency also the main loop can control the output phase, independent from the output frequency, and reduce the lock-up time of the step frequency response. The experimental results confirm the validity of the proposed strategy.

  • PDF

A Sensorless Control of IPMSM using the Adaptive Back-EMF Estimator and Improved Instantaneous Reactive Power Compensator (적응 역기전력 추정기와 개선된 순시 무효전력 보상기를 이용한 돌극형 영구자석 전동기의 센서리스 제어)

  • Lee, Joonmin;Hong, Joo-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.794-803
    • /
    • 2016
  • This paper propose a sensorless control system of IPMSM with a adaptive back-EMF estimator and improved instantaneous reactive power compensator. A saliency-based back-EMF is estimated by using the adaptive algorithm. The estimated back-EMF is inputted to the phase locked loop(PLL) and the improved instantaneous reactive power(IRP) compensator for estimating the position/speed of the rotor and compensating the error components between the estimated and the actual position, respectively. The stability of the proposed system is achieved through Popov's hyper stability criteria. The validity of proposed algorithm is verified by the simulations and experiments.

The Optimal Compensator for AT Forward Multi Resonant Converter

  • Oh Yong-Seung;Kim Hee-Jun;Kim Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.242-246
    • /
    • 2001
  • The alternated forward multi resonant converter (AT forward MRC) is studied on the transient response and the measured loop gain for stability. The compensator is composed of the error amplifier with 3 poles and 2 zeros. This is optimized through the experiment with HP4194A network analyzer. We are initiated by the thinking of how to make the stabilization from the experimental results of loop gain curves. The loop gain, low frequency gain and gain margin are more improved through the experimental considerations. Also, the transient response is more enhanced effectively.

  • PDF

Feedback Control for Expanding Range and Improving Linearity of Microaccelerometers

  • Park, Yong-Hwa;Shim, Joon-Sub;Park, Sang-Jun;Kwak, Dong-Hun;Ko, Hyoung-Ho;Song, Tae-Yong;Huh, Kun-Soo;Park, Jahang-Hyon;Cho, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1706-1710
    • /
    • 2004
  • This paper presents a feedback-controlled, MEMS-fabricated microaccelerometer (${\mu}$XL). The ${\mu}$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis ${\mu}$XL fabricated by sacrificial bulk micromachining (SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100 Hz. The input range, non-linearity and bias stability are improved from ${\pm}$10 g to ${\pm}$18 g, from 11.1 %FSO to 0.86 %FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively

  • PDF

An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control (크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].

The Optimized Compensator for the Stability of AT Forward MRC (AT 포워드 다중 공진형 컨버터의 안정화를 위한 최적 보상회로)

  • Oh, Yong-Seung;Kim, Chang-Sun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1012-1014
    • /
    • 2001
  • The AT Forward MRC is studied on the stability. The compensator is composed of the error amp with 3 poles and 2 zeros. This is optimized through the experiment. The converter loop gain is measured using HP4194A. We are initiated by the thinking of how to make the stabilization from the experimental results of loop gam curves. The loop gain, low frequency gain and gain margin are more improved through the experimental considerations.

  • PDF

A Study of Improving Stability of a System with Perturbed Controller (섭동이 있는 제어기를 갖는 시스템의 안정도 향상에 관한 연구)

  • Cha, Young-Ho;Chung, Tea-Jin;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.466-468
    • /
    • 1998
  • This paper designs a robust controller with improved stability of a system. Robust control theory has been developed by many researchers. The controller derived in that using robust control theory has an assumption that it will be exactly implementation. But, It is very hard because of truncation errors, D-A, A-D transformation, and finite resolution, etc. Such perturbations would make problems in the stability of the system. Recently, Keel's paper presents some examples which shows controllers based on the robust controller design method are very fragile on its own perturbation. In this paper, we try to improve the stability of the closed-loop system in which there exist perturbation in the plant as well as in the controller. The results shows that the stability is improved and the performance is still satisfied.

  • PDF