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Abstract

The alternated forward multi resonant converter (AT forward
MRC) is studied on the transient response and the measured loop

gain for stability. The compensator is composed of the error

amplifier with 3 poles and 2 zeros. This is optimized through the
experiment with HP4194A network analyzer. We are initiated by
the thinking of how to make the stabilization from the
experimental results of loop gain curves. The loop gain, low
frequency gain and gain margin are more improved through the
experimental considerations. Also, the transient response is more
enhanced effectively.

1. Introduction

The DC-DC converters including multi resonant
converters are considerably compensated using the error
amplifiers in the negative feedback schemes for concerning
of the output regulation and the transient characteristics
[1][2]. The stability design is complemented using
pole-zero compensation technique of the error amplifier.
. The optimally compensated AT forward MRC ratings are
chosen as the input 48V, the output 5V/50W, the maximum
operation frequency 2MHz[3]-[6]. When the input is 58V,
the measured maximum voltage stress of 170V is 2.9 times
the input voltage. The maximum efficiency is 81.66%. The
stability ‘analysis is accomplished using impedance/
gain-phase analyzer on the basis of the op amp
compensation skills. In result, we found out that the 3-pole,
2-zero compensator is more suitable than the other
compensators. The experimental circuit, the loop gains and
the transient response, etc are discussed.

R2
Fig. 1 AT forward MRC

2. The compensated AT forward MRC
~ 2.1 The characteristics of the AT forward MRC

As shown in Fig.l, the AT forward zero voltage
switching multi resonant converter is alternatively operated
using two multi resonant switches with dead time. The
design specifications and the experimental components are
listed in Table 1 and Table 2.

Where, T is the transformer. N;, N, is the primary turn
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Table 1 The design specifications

Input (¥7) 38V ~58V
Output (V,) 1%
Qutput current ('i,,) 104

Switching frequency (/) 500KHz~ | MHz

Maximum operating frequency 2MHz

0.45~0.48

Duty ratio (D)

ratio of the transformer. V; is the secondary turn ratio of the
transformer. The control circuits are composed of the drive
circuits and the resonant control IC, MC33067. The
compensation circuit is constituted using the op amp in
MC34067. Fig. 2 shows the experimental circuit for
measuring the loop gains.

Table 2 Experimental components

Circuit parameters Component values
* Primary switch (O, Oy i IRF640
‘ Core Mn-Zn ferrite core
Turns ratio(N) 1.5
T Ni N2 37Ts, USTC
N; 2 Ts, Cufoil
Leakage inductance S 330":" ‘;IO&I;,IZ)Z)
Resonant inductor (Lg;, Lr2) 3 uH
Resonant capacitor (Cry, Cry) 5.7nF
Rectifiers (Dgy, Dra) 60CNQO35
Input filter cap. (Cs, Cs3) 22 pF
Output filter cap. (Cr) 22 uF
Output filter ind. (Lg) . 24 pH

2.2 The optirhal comp.ensator‘

At first, the error amplifier was built in 1-pole, 1-zero
construction. In this paper, 3-pole, 2-zero compensated
error amplifier is considered.. The 3-pole, 2-zero
compensator expresses the characteristics of phase boost
due to 2-zero such as f, f.. that are located closely. It
induces the increasing of phase margin. And also, the third
pole, f;2 reduces the unnecessary gain at a high frequency.
1-pole, 1-zero compensator and 3-pole, 2-zero compensator
are shown in Fig. 3 and Fig. 4, each other. the 1-pole,
l-zero compensator values are R,/ =9408, R;=2KS;
C,/=51nF, the 3-pole, 2-zero compensator values are
R=47K$2, R~43K£ Rs~1082 C=380pF, Cy=2pF,
C3=470pF
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Fig 2 Experimental circuit for measuring the loop gains
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Fig. 4 3-pole, 2-zero type

The right side graphs are the gain-phase plot in Fig.3 and
Fig. 4, respectively. In Fig. 3, the transfer function of 3-pole,
2-zero type and the corner frequencies are as follows:
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Fig. 5 shows the frequency characteristics of error
amplifier using MATLAB. The natural resonant frequency
of the output filter is as follows:

-
T azdLC

=6.93kHz : ®
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Fig. 5 The frequency characteristics of error amplifier using MATLAB

Table 3 The measurement results for 1-pole, 1-zero

| s | kffiz) Jhase Gain margin
1 784 | 90deg 14dB
38 [ 5 | 1087 | 46deg | e ik
6.2 0.29 100 deg (when 83°)
1 1195 | 93deg 13dB
48 5 1.4 | 74deg 16 dB
95 | 1626 | 88deg er]_f‘f?%o\
1 59.82 | 80deg 20.35 dB
58 5 1283 | 75deg 23dB
15 | 1479 | S8deg 34dB

3. Experimental considerations

The experimental measurement recorded the loop gain
for evaluating the stability when the inputs are 38V, 48V
and 58 according to the load current variations. Table 3
shows the measured results of the error amplifier
compensated as 1-pole, 1-zero type. The measured results
of the error amplifier compensated as 3-pole, 2-zero type
are listed in table 4. The measured gain/phase graphs are
shown from Fig. 6 to Fig. 17.

According to the measured results, as you can see that the
£ cross over frequency are decreased as the load current
increase. In the phase margin for expressing the relative
stability, the 3-pole, 2-zero compensator is well operated
more than the 1-pole, 1-zero compensator in stable region.
The phase margin increases as the load current are
increased. As shown in Fig. 9, Fig. 13 and Fig. 17, it has
stable phase margin when the load is 7A. Also, we can see



that the gain margin increases as the load current are

increased.

Table 4 The measurement results for 3-pole, 2-zero

A Phase margin| Gain margin fi
Vi | 1I4) (htlz) B) (dB) igure
1 70.59 0 0.9275 6
3 20.05 65.42 19.54 7
38
5 20.05 64.28 21.33 8
6 14.92 60.09 24.26 9
1 64.31 18.68 2.59 10
48 3 43.61 57.84 11.38 11
5 34.01 60.16 12.75 12
7 29.12 73.56 15.33 13
1 68.43 12.94 221 14
58 3 60.43 25.25 5.04 15
5 51.74 35.25 6.92 16
7 41.62 50.2 11.19 17
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3. Transient response

Fig. 18, Fig. 19 and Fig. 20 show the transient responses
as the load current is varied from 20% to 80%. All figure
(a) are 1-pole, 1-zero type, all figure (b) are 3-pole, 2-zero
type. They are measured at each input voltage of 38V, 48V
and 58V.

4, Conclusions

The stability for the AT forward MRC is considered
experimentally. On the basis of the results of the 1-pole,
2-zero compensated error amplifier, it is improved to the
3-pole, 2-zero compensated error amplifier. Using
HP4194A measuring technique, the gain/phase graph is
obtained. As a results of measuring the gain margin and the
phase margin, we can see that the relative stability is
formed in more stable range.
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(b) 3-pole, 2-zero compensator
Fig. 18 Input 38V(1.2A~4.8A)

ps <
~ {a) 1-pole, 1-zero compensator

H T H T

-
(b) 3-pole, 2-zero compensator
Fig. 19 Input 48V(1.9A~7.6A)
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(b) 3-pole, 2-zero compensator
Fig. 20 Input S8V(2A~8A)
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