• Title/Summary/Keyword: ISI Channel

Search Result 257, Processing Time 0.019 seconds

Link-level Performance of SC-FDM using a Turbo Equalizer (터보 등화기를 적용한 SC-FDM의 링크-레벨 성능)

  • Lee, Joongho;Lim, Jaehong;Yoon, Seokhyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.26-32
    • /
    • 2014
  • Single-Carrier Frequency division multiplexing (SC-FDM) has been selected for the uplink transmission technique in 3GPP-LTE since it has an advantage of low peak-to-average power ratio (PAPR) in user's perspective. The receiver typically uses a frequency domain equalizer, which, however, suffers from noise boost and/or residual ISI especially when the channel has deep nulls. In this paper, we propose using turbo equalizer to mitigate such a problem. We provide link level performance comparison and an insight into how many iteration is needed for reasonable performance and complexity.

DFT-spread OFDM Communication System for the Power Efficiency and Nonlinear Distortion in Underwater Communication (수중통신에서 비선형 왜곡과 전력효율을 위한 DFT-spread OFDM 통신 시스템)

  • Lee, Woo-Min;Ryn, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.777-784
    • /
    • 2010
  • Recently, the necessity of underwater communication and demand for transmitting and receiving various data such as voice or high resolution image data are increasing as well. The performance of underwater acoustic communication system is influenced by characteristics of the underwater communication channels. Especially, ISI(inter symbol interference) occurs because of delay spread according to multi-path and communication performance is degraded. In this paper, we study the OFDM technique to overcome the delay spread in underwater channel and by using CP, we compensate for delay spread. But PAPR which OFDM system has problem is very high. Therefore, we use DFT-spread OFDM method to avoid nonlinear distortion by high PAPR and to improve efficiency of amplifier. DFT-spread OFDM technique obtains high PAPR reduction effect because of each parallel data loads to all subcarrier by DFT spread processing before IFFT. In this paper, we show performance about delay spread through OFDM system and verify method that DFT spread OFDM is more suitable than OFDM for underwater communication. And we analyze performance according to two subcarrier mapping methods(Interleaved, Localized). Through the simulation results, performance of DFT spread OFDM is better about 5~6dB at $10^{-4}$ than OFDM. When compared to BER according to subcarrier mapping, Interleaved method is better about 3.5dB at $10^{-4}$ than Localized method.

A 2.0-GS/s 5-b Current Mode ADC-Based Receiver with Embedded Channel Equalizer (채널 등화기를 내장한 2.0GS/s 5비트 전류 모드 ADC 기반 수신기)

  • Moon, Jong-Ho;Jung, Woo-Chul;Kim, Jin-Tae;Kwon, Kee-Won;Jun, Young-Hyun;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.184-193
    • /
    • 2012
  • In this paper, a 5-bit 2-GS/s 2-way time interleaved pipeline ADC for high-speed serial link receiver is demonstrated. Implemented as a current-mode amplifier, the stage ADC simultaneously processes the tracking and residue amplification to achieve higher sampling rate. In addition, each stage incorporates a built-in 1-tap FIR equalizer, reducing inter-symbol-interference (ISI)without an extra digital post-processing. The ADC is designed in a 110nm CMOS technology. It comsumes 91mW from a 1.2-V supply. The area excluding the memory block is $0.58{\times}0.42mm^2$. Simulation results show that when equalizer is enabled, the ADC achieves SNDR of 25.2dB and ENOB of 3.9bits at 2.0GS/s sample rate for a Nyquist input signal. When the equalizer is disengaged, SNDR is 26.0dB for 20MHz-1.0GHz input signal, and the ENOB of 4.0bits.

Design and Development of VDL Mode-2 D8PSK Modem (VDL Mode-2 D8PSK 모뎀 설계 및 개발)

  • Gim, Jong-Man;Choi, Seoung-Duk;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1085-1097
    • /
    • 2009
  • We present a structure and design method of the D8PSK modem compatible with the VDL mode-2 standard and performance test results of the developed modem. In VDL mode-2, the raised cosine filter is used only in the transmitter and a general low pass filter is used in the receiver. Consequently, we can not achieve ISI reduction but can have better spectrum characteristics. Although there is 1~2 dB performance degradation with an un-matched filter compared to that with a matched filter, it is more important to minimize adjacent channel interference in narrow band communications. The transmit signal is generated digitally to avoid the problems(I/Q imbalance and DC offset etc.) of analog modulators. In addition the digital down converter using digital IF sampling technique is adopted for the receiver. This paper contains the overall configuration, design method and simulation results based in part on the previously proposed structures and algorithms. It is confirmed that the modem transmits and receives messages successfully at a speed of max. 870 km/h over ranges of up to 310 km through the ground and in-flight communication tests.

Comparison and Performance analysis of Wavelet OFDM system and FD-OFDM (웨이블릿 OFDM 시스템과 FD-OFDM 시스템 성능 비교 분석)

  • Lee, Junseo;Kim, Ji-Hoon;Kim, Whanwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.34-42
    • /
    • 2013
  • In this paper, we compare the performance of wavelet OFDM (Orthogonal Frequency Division Multiplexing) and FD-OFDM(Frequency diversity OFDM) system with conventional OFDM system. Wavelet OFDM system uses wavelet transform rather than Fourier transform and contains intermediate characteristics of CDM (Code Division Multiplexing) and OFDM. In wavelet OFDM system, inter-symbol interference (ISI) can be suppressed effectively and adjacent channel interference can be also minimized well. In FD-OFDM system, each parallel branch symbol is multiplied by the orthogonal sequence and distributed into all sub-carriers. Then, each sub-carrier transmits information composed of the symbol components of all parallel branches in the given frame. FD-OFDM contains the frequency diversity characteristic and, therefore, FD-OFDM can be robust to the narrowband interference. For the comparison among different systems, BER (Bit-Error Rate) performances are evaluated in the presence of narrow-band interference and a harmonic noise channel. From the evaluation results, compared to the conventional OFDM, wavelet OFDM and FD-OFDM shows better robustness against the interference and, especially, wavelet OFDM is the most robust in harmonic noise channel.

An ASIC Chip Design of an DFDM-based 25 Mbps Wireless ATM Moderm Using Cyclic Suffix (Cyclic Suffix를 사용한 OFDM 기반의 25 Mbps 무선 ATM 모뎀의 ASIC Chip 설계)

  • 박경원;박세현;양원영;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.859-870
    • /
    • 2000
  • In this paper, an efficient H/W implementation technique for guard interval in OFDM(Orthogonal Frequency Division Multiplexing) systems is proposed and applied to ASIC chip design of an OFDM-based 25 Mbps wireless ATM modem. In OFDM systems, a cyclic prefix, longer than the largest multipath delay spread, is usually inserted to maintain the orthogonality of subchannels, by making the linear convolution of the channel ok like circular convolution inherent to the discreate Fourier domain, as well as to prevent the ISI(Intersymbol Interference) within the OFDM block. However, the OFDM system using the cyclic prefix requires an additional H/W in transmitter in order to store the original samples and to append the cyclic prefix to the beginning of each block. In this paper, a new approach using a cyclic prefix, even with a significantly lower H/W complexity. Finally, the performance of the proposed approach is demonstrated by applying it to ASIC chip design of an OFDM-based 25 Mbps wireless ATM modem.

  • PDF

A Design of IFFT Processor for Reducing OFDM Transmitter Latency (OFDM 송신단의 지연을 줄이기 위한 IFFT Processor의 설계)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1167-1176
    • /
    • 2009
  • In This Paper, we introduce an efficient IFFT design technique named for transmitter of OFDM (Orthogonal Frequency Division Multiplexing) system. In OFDM system, a cyclic prefix is inserted in forepart of OFDM symbol to prevent ICI(Inter-channel Interference) and ISI (Inter-symbol Interference). Attaching cyclic prefix causes delay in storing and copying IFFT result. The proposed IFFT removes this delay because its output is cyclic shifted by the length of cyclic prefix. So we can make a complete OFDM symbol by just copying the forepart of IFFT output to the end. In many cases, the length of cyclic prefix is 1/2n of FFT size, and this IFFT does not require additional hardware complexity and it does not cause any performance degradation.

Low Power 4-Gb/s Receiver for GND-referenced Differential Signaling (접지기반 차동신호 전송을 위한 저전력 4-Gb/s 수신단 설계)

  • Lee, Mira;Kim, Seok;Jeong, Youngkyun;Bae, Jun-Han;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.244-250
    • /
    • 2012
  • This paper describes a 4-Gb/s receiver circuit for a low-swing ground-referenced differential signaling system. The receiver employs a common-gate level-shifter and a continuous linear equalizer which compensates inter-symbol-interference (ISI) and improves voltage and timing margins. A bias circuit maintains the bias current of the level-shifter when the common level of the input signal changes. The receiver is implemented with a low-power 65-nm CMOS technology. When 4-Gb/s 400mVp-p signals are transmitted to the receiver through the channel with the attenuation of -19.7dB, the timing margin based on bit error rate (BER) of $10^{-11}$ is 0.48UI and the power consumption is as low as 0.30mW/Gb/s.

The Performance Comparison of CR-CMA and CM-CMA Adaptive Equalization in 16-QAM Signal (16-QAM 신호에 대한 CR-CMA와 CM-CMA의 적응 등화 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2011
  • This paper is concerned with the performance comparison of CR-CMA (Coordinate Reduction-CMA) and CM-CMA (Constellation Matching-Constant Modulus Algorithm) that is used for improving the convergence characteristic and residual intersymbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the intersymbol interference on the wireless and the wired band-limited channel, and the blind method which does not need for extra bandwidth by the training sequence of digital code are researched. Recently, by using the merit of simple operation in the CMA, the performance improvement is obtained by the modifying the cost function of it. In this paper, the new algorithm, CR-CMA and CM-CMA, the performance analysis are performed and compared by computer simulation. The CR-CMA has a superior equalization characteristics in the recovered constellation, convergence speed and residual intersymbol interference than the CM-CMA by computer simulation.

The Performance Improvement of CMA Adaptive Equalization in 16-QAM Signal using the Coordinate Reduction (Coordinate Reduction을 이용한 16-QAM 신호의 CMA 적응 등화 성능 개선)

  • Lim, Seung-Gag;Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • This paper is concerned with the CR-CMA (Coordinate Reduction-Constant Modulus Algorithm) adaptive equalization algorithm using the coordinate reduction in order to improve the convergence characteristic and residual intersymbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the intersymbol interference on the wireless and the wired band-limited channel that connect the transmitting system and receiving system. The CMA is widely known as the representative algorithm for equalization. In order to transmitting the mass information with a high speed through the channels, a fast convergence speed in the equalizer performance that is able to minimize overhead needed for equalization is acquired. In this paper, we introduce the new cost function to reduce the constellation of received signal at the input stage of a equalizer. It reduce the error at the steady equalization state. By the computer simulation, we confirmed that the proposed CR-CMA algorithm has the faster convergence speed and the smaller residual intersymbole interference than the conventional CMA.