• 제목/요약/키워드: Hypersurfaces

검색결과 292건 처리시간 0.023초

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • 제36권3호
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

Lightlike Hypersurfaces of an Indefinite Nearly Trans-Sasakian Manifold with an (ℓ, m)-type Connection

  • Lee, Chul Woo;Lee, Jae Won
    • Kyungpook Mathematical Journal
    • /
    • 제60권2호
    • /
    • pp.223-238
    • /
    • 2020
  • We study a lightlike hypersurface M of an indefinite nearly trans-Sasakian manifold ${\bar{M}}$ with an (ℓ, m)-type connection such that the structure vector field ζ of ${\bar{M}}$ is tangent to M. In particular, we focus on such lightlike hypersurfaces M for which the structure tensor field F is either recurrent or Lie recurrent, or such that M itself is totally umbilical or screen totally umbilical.

A class of compact submanifolds with constant mean curvature

  • Jang, Changrim
    • 대한수학회보
    • /
    • 제34권2호
    • /
    • pp.155-171
    • /
    • 1997
  • Let $M^n$ be a connected subminifold of a Euclidean space $E^m$, equipped with the induced metric. Denoty by $\Delta$ the Laplacian operator of $M^n$ and by x the position vector. A well-known T. Takahashi's theorem [13] says that $\delta x = \lambda x$ for some constant $\lambda$ if and only if $M^n$ is either minimal subminifold of $E^m$ or minimal submanifold in a hypersphere of $E^m$. In [9], O. Garay studied the hypersurfaces $M^n$ in $E^{n+1}$ satisfying $\delta x = Dx$, where D is a diagonal matrix, and he classified such hypersurfaces. Garay's condition can be seen as a generalization of T.

  • PDF

HYPERSURFACES IN 𝕊4 THAT ARE OF Lk-2-TYPE

  • Lucas, Pascual;Ramirez-Ospina, Hector-Fabian
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.885-902
    • /
    • 2016
  • In this paper we begin the study of $L_k$-2-type hypersurfaces of a hypersphere ${\mathbb{S}}^{n+1}{\subset}{\mathbb{R}}^{n+2}$ for $k{\geq}1$ Let ${\psi}:M^3{\rightarrow}{\mathbb{S}}^4$ be an orientable $H_k$-hypersurface, which is not an open portion of a hypersphere. Then $M^3$ is of $L_k$-2-type if and only if $M^3$ is a Clifford tori ${\mathbb{S}}^1(r_1){\times}{\mathbb{S}}^2(r_2)$, $r^2_1+r^2_2=1$, for appropriate radii, or a tube $T^r(V^2)$ of appropriate constant radius r around the Veronese embedding of the real projective plane ${\mathbb{R}}P^2({\sqrt{3}})$.

LAGUERRE CHARACTERIZATION OF SOME HYPERSURFACES

  • Fang, Jianbo;Li, Fengjiang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.875-884
    • /
    • 2016
  • Let x : $^{Mn-1}{\rightarrow}{\mathbb{R}}^n$ ($n{\geq}4$) be an umbilical free hyper-surface with non-zero principal curvatures. Then x is associated with a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, and a Laguerre second fundamental form B, which are invariants of x under Laguerre transformation group. We denote the Laguerre scalar curvature by R and the trace-free Laguerre tensor by ${\tilde{L}}:=L-{\frac{1}{n-1}}tr(L)g$. In this paper, we prove a local classification result under the assumption of parallel Laguerre form and an inequality of the type $${\parallel}{\tilde{L}}{\parallel}{\leq}cR$$ where $c={\frac{1}{(n-3){\sqrt{(n-2)(n-1)}}}$ is appropriate real constant, depending on the dimension.

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II

  • Hu, Jin-Hua;Mao, Jing;Tu, Qiang;Wu, Di
    • 대한수학회지
    • /
    • 제57권5호
    • /
    • pp.1299-1322
    • /
    • 2020
  • We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.

Lp-SOBOLEV REGULARITY FOR INTEGRAL OPERATORS OVER CERTAIN HYPERSURFACES

  • Heo, Yaryong;Hong, Sunggeum;Yang, Chan Woo
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.965-978
    • /
    • 2014
  • In this paper we establish sharp $L^p$-regularity estimates for averaging operators with convolution kernel associated to hypersurfaces in $\mathbb{R}^d(d{\geq}2)$ of the form $y{\mapsto}(y,{\gamma}(y))$ where $y{\in}\mathbb{R}^{d-1}$ and ${\gamma}(y)={\sum}^{d-1}_{i=1}{\pm}{\mid}y_i{\mid}^{m_i}$ with $2{\leq}m_1{\leq}{\cdots}{\leq}m_{d-1}$.