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LAGUERRE CHARACTERIZATION OF SOME

HYPERSURFACES

Jianbo Fang and Fengjiang Li

Abstract. Let x : Mn−1 → Rn (n ≥ 4) be an umbilical free hyper-
surface with non-zero principal curvatures. Then x is associated with
a Laguerre metric g, a Laguerre tensor L, a Laguerre form C, and a
Laguerre second fundamental form B, which are invariants of x under
Laguerre transformation group. We denote the Laguerre scalar curvature
by R and the trace-free Laguerre tensor by L̃ := L − 1

n−1
tr(L)g. In

this paper, we prove a local classification result under the assumption of
parallel Laguerre form and an inequality of the type

‖L̃‖ ≤ cR,

where c = 1

(n−3)
√

(n−2)(n−1)
is appropriate real constant, depending on

the dimension.

1. Introduction

Let x : Mn−1 → Rn be an umbilical free hypersurface with non-zero princi-
pal curvatures. Let ξ : M → Sn−1 be its unit normal. Let {e1, e2, . . . , en−1}
be the orthonormal basis for TM with respect to dx · dx, consisting of unit
principal vectors. Let ri =

1
ki

, r = r1+r2+···+rn−1

n−1 be the curvature radius and
mean curvature radius of x respectively, where ki 6= 0 is the principal curvature
corresponding to ei. We define ρ =

√∑
i(ri − r)2, Ẽi = riei, 1 ≤ i ≤ n − 1.

Then g = ρ2dξ · dξ is a Laguerre invariant metric, {Ẽ1, Ẽ2, . . . , Ẽn−1} is an or-
thonormal basis for III = dξ ·dξ. The normalized scalar curvature of Laguerre
metric g will be denoted by R and is called the normalized Laguerre scalar cur-
vature. Two basic Laguerre invariants of x, the Laguerre form C =

∑
iCiωi

and the Laguerre tensor L =
∑

ij Lijωi ⊗ ωj, are defined by

(1) Ci = −ρ−2
(
Ẽi(r) − Ẽi(log ρ)(ri − r)

)
,
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(2) Lij = ρ−2
(
Hessij(log ρ)− Ẽi(log ρ)Ẽj(log ρ) +

1

2
(‖∇ log ρ‖2 − 1)δij

)
,

where (Hessij) and ∇ are the Hessian-matrix and the gradient operator with
respect to the third fundamental form III = dξ · dξ.

Laguerre geometry of surfaces in R3 has been developed by Blaschke and his
school (see [1]). Recently, there has been some renewed interest for the surface
of R3 in Laguerre geometry (see [2, 3, 4, 9]).

In [7], Li and Wang studied Laguerre differential geometry of oriented hyper-
surfaces in Rn. For any umbilical-free hypersurface x : M → Rn with non-zero
principal curvatures, Li and Wang defined a Laguerre invariant metric g, a
Laguerre second fundamental form B, a Laguerre form C and a Laguerre ten-
sor L on M , and showed that {g,B} is a complete Laguerre invariant system
for hypersurfaces in Rn with n ≥ 4. In the case n = 3, a complete Laguerre
invariant system for surfaces in R

3 is given by {g,B,L}.
In [8], authors classified hypersurfaces with parallel Laguerre second funda-

mental form. Laguerre tensor is a codazzi tensor, which is another Laguerre
invariant. An eigenvalue of Laguerre tensor L of x is called a Laguerre eigen-
value of x. If Laguerre eigenvalues of x are equal, i.e., L =

∑
i,j λδijωi⊗ωj, and

Laguerre form is vanishing, then x is called Laguerre isotropic hypersurface.
we define the trace-free Laguerre tensor L̃ := L − 1

n−1 tr(L)g. Authors clas-
sified hypersurfaces with vanishing Laguerre form C and vanishing trace-free
Laguerre tensor L̃ in [6].

In this paper, we prove the following local result:

Theorem 1.1. Let x : Mn−1 → Rn (n ≥ 4) be an umbilical free hypersurface

with non-zero principal curvatures. If its Laguerre form C is parallel and

‖L̃‖ ≤
R

(n− 3)
√
(n− 2)(n− 1)

,

then R is constant, we have equality

‖L̃‖ =
R

(n− 3)
√
(n− 2)(n− 1)

and Mn−1 is Laguerre equivalent to an open subset of one of the following

hypersurfaces in Rn:
(i) the images of τ of the hypersurface x̃ in Rn

0 with mean curvature radius

r = 0 and ρ =constant, where for the definition of τ , please refer to [6].
(ii) the hypersurface x̃ : H1 × Sn−2 → Rn by

x̃(w, v, u) =

√
(n− 1)(n− 3)

R

( v

w
,
u

w
(1 + w)

)
,

where u : Sn−2 → Rn−1 and (w, v) : H1 → R2
1 are the canonical embeddings.

We organize the paper as follows. In Section 2 we give Lguerre invariants
for hypersurfaces in Rn. In Section 3, we make calculations for the example
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being characterized by our Theorem 1.1. Then we prove the Main Theorem in
Section 4.

2. Laguerre geometry of hypersurfaces in Rn

In this section we review the Laguerre invariants and structure equations for
hypersurfaces in Rn. For the detail we refer to [7].

Let Rn+3
2 be the space Rn+3 equipped with the inner product

〈X,Y 〉 = −x1y1 + x2y2 + · · ·+ xn+2yn+2 − xn+3yn+3.

Let Cn+2 be the light-cone in Rn+3 given by Cn+2 = {X ∈ R
n+3
2 | 〈X,X〉 = 0}.

Let LG be the subgroup of orthogonal group O(n+ 1, 2) on R
n+3
2 given by

LG = {T ∈ O(n + 1, 2) | ςT = ς},

where ς = (1,−1,~0, 0), where ~0 ∈ Rn, is a light-like vector in R
n+3
2 .

Let x : M → Rn be an umbilical free hypersurface with non-zero principal
curvatures. Let ξ : M → Sn−1 be its unit normal. Let {e1, e2, . . . , en−1} be the
orthonormal basis for TM with respect to dx · dx, consisting of unit principal
vectors. We write the structure equations of x : M → R

n by

ej(ei(x)) =
∑

k

Γk
ijek(x) + kiδijξ; ei(ξ) = −kiei(x), 1 ≤ i, j, k ≤ n− 1,

where ki 6= 0 is the principal curvature corresponding to ei. Let

ri =
1

ki
, r =

r1 + r2 + · · ·+ rn−1

n− 1

be the curvature radius and mean curvature radius of x, respectively. We define
Laguerre position vector of x by

Y = ρ(x · ξ,−x · ξ, ξ, 1) : M → Cn+2 ⊂ R
n+3
2 ,

where ρ =
√∑

i(ri − r)2 > 0.

Theorem 2.1. Let x, x̃ : M → Rn be two umbilical oriented hypersurfaces

with non-zero principal curvatures. Then x and x̃ are Laguerre equivalent if

and only if there exists T ∈ LG such that Ỹ = Y T .

From the theorem we know that

g = 〈dY, dY 〉 = ρ2dξ · dξ = ρ2III

is a Laguerre invariant metric, where III is the third fundamental form of x.
we call g the Laguerre metric of x. Let ∆ be the Laplacian operator of g, then
we have

(3) N =
1

n− 1
∆Y +

1

2(n− 1)2
〈∆Y,∆Y 〉Y,

and

η =
(1
2
(1 + |x|2),

1

2
(1 − |x|2), x, 0

)
+ r(x · ξ,−x · ξ, ξ, 1)
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From (3) we get

〈Y, Y 〉 = 〈N,N〉 = 0, 〈N, Y 〉 = −1, 〈η, η〉 = 0, 〈η, ς〉 = −1.

Let {E1, E2, . . . , En−1} be an orthonormal basis for g = 〈dY, dY 〉 with dual
basis {ω1, ω2, . . . , ωn−1} and write Yi = Ei(Y ), 1 ≤ i ≤ n − 1. Then we have
the following orthogonal decomposition,

Rn+3
2 = Span{Y,N} ⊕ Span{Y1, Y2, . . . , Yn−1} ⊕ Span{η, ς}.

We call {Y,N, Y1, . . . , Yn−1, η, ς} a Laguerre moving frame in R
n+3
2 of x. By

taking derivatives of this frame we obtain the following structure equations:

(4) Ei(N) =
∑

j

LijYj + Ciς,

(5) Ej(Yi) = LijY + δijN +
∑

k

Γk
ijYk +Bijς,

(6) Ei(η) = −CiY +
∑

j

BijYj .

From these equations we obtain the following basic Laguerre invariants:
(i) The Laguerre metric g = 〈dY, dY 〉;
(ii) The Laguerre second fundamental form B =

∑
ij Bijωi ⊗ ωj;

(iii) The Laguerre tensor L =
∑

ij Lijωi ⊗ ωj;

(iv) The Laguerre form C =
∑

i Ciωi, where Lij = Lji, Bij = Bji.

By taking further derivatives of (4)-(6), we get the following relations be-
tween these invariants:

(7) Lij,k = Lik,j ;

(8) Ci,j − Cj,i =
∑

k

(BikLkj −BkjLki);

(9) Bij,k −Bik,j = Cjδik − Ckδij ;

(10) Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik,

where {Lij,k}, {Ci,j} and {Bij,k} are covariant derivatives of the tensors {Lij ,
Ci, Bij} with respect to the Laguerre metric g, respectively, and Rijkl is the
curvature tensor of g. Moreover, we have the following identities (see [7]):

(11)
∑

i,j

(Bij)
2 = 1,

∑

i

Bii = 0,
∑

i

Bij,i = (n− 2)Cj ,

(12)
∑

i

Lii = −
1

2(n− 1)
〈∆Y,∆Y 〉Y,

(13) Rik = −(n− 3)Lik −
(∑

i

Lii

)
δik,
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(14) R = −2(n− 2)
∑

i

Lii =
n− 2

(n− 1)
〈∆Y,∆Y 〉Y

is the normalized scalar curvature.
In the case n ≥ 4, we know from (11) and (14) that Ci and Lij are completely

determined by the Laguerre invariants {g,B}, thus we get:

Theorem 2.2. Two umbilical free oriented hypersurfaces in Rn (n > 3) with

non-zero principal curvatures are Laguerre equivalent if and only if they have

the same Laguerre metric g and Laguerre second fundamental form B.

In the case n = 3, a complete Laguerre invariant system for surfaces in R3

is given by {g,B,L}.

We define Ẽi = riei, 1 ≤ i ≤ n − 1. Then {Ẽ1, Ẽ2, . . . , Ẽn−1} is an or-

thonormal basis for III = dξ · dξ. Then {Ei = ρ−1Ẽi | 1 ≤ i ≤ n − 1} is an
orthonormal basis for the Laguerre metric g. By direct calculations, we obtain
the following local expressions:

(15) g =
∑

i

(ri − r)2III = ρ2III, Bij = ρ−1(r − ri)δij .

3. Typical examples

In this section, for the purpose of proving Theorem 1.1, we will consider a
umbilic-free hypersurface M in Rn, and then calculate the Laguerre invariants
for x : H1 × Sn−2 in Rn.

Example 3.1. We denote by H1 = {(w, v) ∈ R2
1 | − w2 + v2 = −1, w > 0}

the hyperbolic space embedded in the Minkowski space R2
1. We define x :

H1 × Sn−2 → Rn by

(16) x(w, v, u) =
( v

w
,
u

w
(1 + w)

)
,

then x satisfies

(17) C ≡ 0, ∇B = 0,

(18) R = (n− 1)(n− 3) = const,

(19) ‖L̃‖ =

√
n− 1

n− 2
.

In fact: clearly x is a hypersurface with the unit normal field ξ = ( v
w
, u
w
),

and the first and the second fundamental forms of x are given by

I = dx · dx =
1

w2
{−dw · dw + dv · dv + (1 + w)2du · du},

II = −dx · dξ = −
1

w2
{−dw · dw + dv · dv + (1 + w)du · du},
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respectively. Therefore x has two principal curvature

(20) k1 = −1, k2 = · · · = kn−1 = −
1

w + 1
.

From (20) we see that

r =
r1 + r2 + · · ·+ rn−1

n− 1
= −

(n− 2)w + (n− 1)

n− 1
,

ρ2 =
∑

i

(ri − r)2 =
n− 2

n− 1
w2.

From (15) we get the Laguerre metric

g =
n− 2

n− 1
(−dw2 + dv · dv + du · du)

Therefore, g = g1 + g2, where g1, g2 have constant sectional curvature n−1
n−2 ,

−n−1
n−2 respectively. And the Laguerre second fundamental form is given, by

using (15),

Bij = biδij ,

b1 = −

√
n− 2

n− 1
, b2 = · · · = bn−1 =

√
1

(n− 1)(n− 2)
.

From (1) we get Ci = 0, 1 ≤ i ≤ n− 1, that is (17).
Let Lij = aiδij , from (10) we get

a1 =
n− 1

2(n− 2)
, a2 = · · · = an−1 = −

n− 1

2(n− 2)
.

Thus we have

trL =
n−1∑

i=1

ai = −
(n− 1)(n− 3)

2(n− 2)

and L̃ij = Lij −
trL
n−1δij = ãiδij with

ã1 = 1, ã2 = · · · = ãn−1 = −
1

n− 2
.

This gives

‖L̃‖2 =

n−1∑

i=1

ã2i =
n− 1

n− 2
.

On the other hand, from (14), we have

R = (n− 1)(n− 3).
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4. The proof of the main theorem

We are going to calculate the Laplacian of the length of the Laguerre second
fundamental form. By definition and (11) we have

(21) 0 =
1

2
∆
(∑

(Bij)
2
)
=

∑
(Bij,k)

2 +
∑

BijBij,kk.

On the other hand, using (9) and Ricci identities, noting that the Laguerre
form C is parallel, we obtain

Bij,kk = Bkk,ij +BlkRlijk +BilRlkjk .

Form (10), (11) and the above equation, we easily obtain

(22) BijBij,kk = −B2
ijLkk − (n− 1)BijBilLlj .

Inserting (21) into (22), we get the following lemma:

Lemma 4.1. Let x : Mn−1 → Rn be an umbilical free hypersurface with

non-zero principal curvatures. If the Laguerre form C of x is parallel, then

(23) ‖∇B‖2 − (n− 1)tr(B2L)− tr(L) = 0.

We state the following lemma which is needed in the proof of main theorem.

Lemma 4.2 (cf. [3]). Let a1, . . . , an−1 and b1, . . . , bn−1 be 2(n−1) real numbers

satisfying
∑

i ai = 0,
∑

i bi = 0. Then

(24)
∣∣∣
∑

aib
2
i

∣∣∣ ≤
n− 3√

(n− 1)(n− 2)

√∑
a2i

∑
b2i .

Moreover, if
∑

i a
2
i 6= 0 and

∑
i b

2
i 6= 0, then equality holds if and only if there

are (n− 2) pairs of numbers (ai, bi) take the same value (a, b).

The proof of the main theorem. Define the free-trace tensor

L̃ := L−
1

n− 1
tr(L)g.

Since the Laguerre form C of x is parallel, from (8) we have BL = LB. Hence,

we can choose {Ei} such that both, B and L̃, are simultaneously diagonal, and
therefore we can apply Lemma 4.2:

(25) tr(L̃B2) ≤
n− 3√

(n− 1)(n− 2)
‖L̃‖‖B‖2.

Since the quantities on both side of (25) are invariant under orthogonal trans-
formations, inequality (25) is independent of the choice of {Ei}. From (23) and
(25) we have

(26) 0 ≥ ‖∇B‖2 − 2tr(L)−
(n− 1)(n− 3)√
(n− 1)(n− 2)

‖L̃‖‖B‖2.
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Putting (11) and (13) into (26), we have

(27) 0 ≥ ‖∇B‖2 +
1

n− 2

(
R− (n− 3)

√
(n− 2)(n− 1)‖L̃‖

)
.

The assumption of the theorem

‖L̃‖ ≤
1

(n− 3)
√
(n− 2)(n− 1)

R,

and (26) imply

(28) ∇B = 0, ‖L̃‖ =
1

(n− 3)
√
(n− 2)(n− 1)

R,

and we have equality in the inequality of (28). We consider the two cases:

Case(I): L̃ = 0.

If L̃ = 0, then from (28) and (14), we have

(29) R = 0, L =
1

n− 1
tr(L)g = 0.

This together with Theorem 1.1 in [6] implies that M is Laguerre equivalent
to the images of τ of hypersurface x̃ in Rn

0 with mean curvature radius r = 0
and ρ =constant.

Case(II): L̃ 6= 0.

Now we assume that L̃ 6= 0. Since the Laguerre form is parallel, we can
choose {Ei} such that both, B and L, are simultaneously diagonal. Let
µ1, . . . , µn−1 and λ1, . . . , λn−1 are the eigenvalues of inequality holds, Lemma
4.2 gives

(30) µ2, . . . , µn−1 =: µ, λ2, . . . , λn−1 =: λ.

The relations tr(B) = 0 and ‖ B ‖2= 1 imply

(31) µ1 = −

√
n− 2

n− 1
, µ =

√
1

(n− 1)(n− 2)
.

We use the following convention on the ranges of indices:

(32) 1 ≤ i, j, k, . . . ≤ (n− 1), 2 ≤ α, β, γ, . . . ≤ (n− 1).

Since ∇B = 0, we have

(33) 0 = B1α,kωk = dB1α +B1kωkα +Bkαωk1 = (µ1 − µ)ω1α.

As x is umbilic-free, we have

(34) ω1α = 0,

this gives

(35) −
1

2
R1αijωi ∧ ωj = dω1α − ω1i ∧ ωiα = 0.
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Form the Gauss equation (2.8) we have

(36) 0 = R1α1α = −λ1 − λ.

That is

(37) λ1 = −λ.

We are going to show that both λ1 and λ are constant. In fact, noting that
Lij = 0 for i 6= j, from (34) we get

(38) L1α,kωk = dL1α + L1kωkα + Lkαωk1 = 0.

In particular, we have

(39) Lαα,1 = Lα1,α = L1α,α = 0, L11,α = L1α,1.

(38) and (39) give

(40) L11,1 = −Lαα,1.

Hence

(41) dλ = 0.

From this and (37) we see that both λ1 and λ are constant. From (34), it
followings that the two distributions, defined by ω1 = 0 and ω2 = · · · = ωn−1 =
0, are both integrable and thus give a local decomposition of M . Then every
point of M has a neighborhood U which is a Riemannian product V1 × V2,
where V1 and V2 are simply connected, with dimV1 = 1 and dimV2 = n − 2.
Since n ≥ 4, the sectional curvature of V2 is given by

(42) Rαβαβ = −2λ.

V2 is a manifold with constant curvature. From (28) and (37) we see that

(43) λ = −
R

2(n− 2)(n− 3)
.

Hence

(44) B11 = −

√
n− 2

n− 1
, Bαα =

√
1

(n− 1)(n− 2)
.

(45) L11 =
R

2(n− 2)(n− 3)
, Lαα = −

R

2(n− 2)(n− 3)

Now we compare with Example 3.1 and then consider the following example:
the hypersurface x̃ : H1 × Sn−2 → Rn by

x̃(w, v, u) =

√
(n− 1)(n− 3)

R

( v

w
,
u

w
(1 + w)

)
,

where u : Sn−2 → Rn−1 and (w, v) : H1 → R2
1 are the canonical embeddings.

We get that the laguerre metric g̃ of x̃

g̃ =
(n− 2)(n− 3)

R

(
− dw2 + dv · dv + du · du

)
= g̃1 + g̃2,
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where g̃1 = (n−2)(n−3)
R

(
− dw2 + dv · dv

)
and g̃2 = (n−2)(n−3)

R

(
du · du

)
.

We know that x : Mn−1 → Rn and x̃ : H1 × Sn−2 → Rn have the same
Laguerre invariants. Thus from Theorem 2.2 x and x̃ are locally Laguerre
equivalent. �
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[8] H. Liu, C. Wang, and G. Zhao, Möbius isotropic submanifolds in Sn, Tohoku Math. J.

(2) 53 (2001), no. 4, 553–569.
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