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HYPERSURFACES IN S4 THAT ARE OF Lk-2-TYPE

Pascual Lucas and Héctor-Fabián Raḿırez-Ospina

Abstract. In this paper we begin the study of L
k
-2-type hypersurfaces

of a hypersphere Sn+1 ⊂ Rn+2 for k ≥ 1. Let ψ : M3 → S4 be an ori-
entable H

k
-hypersurface, which is not an open portion of a hypersphere.

ThenM3 is of L
k
-2-type if and only ifM3 is a Clifford tori S1(r1)×S2(r2),

r21 + r22 = 1, for appropriate radii, or a tube T r(V 2) of appropriate con-
stant radius r around the Veronese embedding of the real projective plane
RP 2(

√
3).

1. Introduction

The theory of submanifolds of finite type were introduced by B. Y. Chen
during the late 1970s, and the first results on this subject were collected in his
books [12] and [13]. Although the first definition was given for a compact sub-
manifold in the Euclidean space, Chen extended the concept to non-compact
submanifolds in EuclideanR

m or pseudo-Euclidean spaces Rm
s , [14]. An isomet-

ric immersion ψ : Mn → Rm of a submanifold Mn (not necessarily compact)
into Rm is said to be of finite type if it admits a finite spectral decomposition

ψ = a+ ψ1 + · · ·+ ψq, ∆ψt = λtψt,

for some natural number q, where λt are constants, a is a constant vector and
ψt are non-constant vector functions. Otherwise, the immersion is said to be
of infinite type.

A detailed survey of the results, up to 1996, on this subject was given by
Chen in [17]. Since then, the study of finite type submanifolds, in particu-
lar, of biharmonic submanifolds, have received a growing attention with many
progresses during last years. In a recent article [18], Chen provides a detailed
account of recent development on problems and conjectures about finite type
submanifolds.
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A special class of finite type submanifolds was introduced by O. J. Garay
in [24]; he considered submanifolds of a Euclidean space whose position vector
field satisfies ∆ψ = Aψ, for some diagonal matrix A; in other words, each
coordinate function of ψ is an eigenfunction of the Laplacian. Garay called
such submanifolds coordinate finite type submanifolds. Later on, F. Dillen, J.
Pas and L. Verstraelen observed in [22] that this condition is not coordinate
invariant and proposed the study of submanifolds satisfying the condition ∆ψ =
Aψ+b, for some constant matrix A and some constant vector b. That condition
has been deeply studied for submanifolds in Euclidean or pseudo-Euclidean
spaces as well as in pseudo-Riemannian space forms (see for example [1], [2],
[3], [20], [27], [38]).

It is well known that the Laplacian operator ∆ can be seen as the first
one of a sequence of n operators L0 = ∆, L1, . . . , Ln−1, where Lk stands for
the linearized operator of the first variation of the (k + 1)-th mean curvature
arising from normal variations of the hypersurface (see, for instance, [39]).
These operators are given by Lk(f) = tr(Pk ◦∇

2f) for a smooth function f on
M , where Pk denotes the k-th Newton transformation associated to the second
fundamental form of the hypersurface and ∇2f denotes the self-adjoint linear
operator metrically equivalent to the Hessian of f .

From this point of view, Kashani [28] introduced the notion of Lk-finite-type
hypersurface in the Euclidean space. In general, a submanifold Mn in Rm is
said to be of Lk-finite-type if the position vector ψ :Mn → Rm ofMn into Rm

admits the following finite spectral decomposition

ψ = a+ ψ1 + · · ·+ ψq, Lkψt = λtψt,

where a is a constant vector, λt are constants and ψt are non-constant R
m-

valued maps on Mn. If all λt’s are mutually different, Mn is said to be of Lk-
q-type, and if one of λt is zero M

n is said to be of Lk-null-q-type. Obviously,
that definition is also valid for a pseudo-Riemannian submanifold Mn

t into the
pseudo-Euclidean space Rm

s .
Inspired by [22], Aĺıas and Gürbuz initiated in [4] the study of hyper-

surfaces in Euclidean space satisfying the condition Lkψ = Aψ + b, where
A ∈ R(n+1)×(n+1) is a constant matrix and b ∈ Rn+1 is a constant vec-
tor. This initial work has been extended to hypersurfaces in the hypersphere
Sn+1 ⊂ Rn+2 ([5]), to hypersurfaces in Lorentzian space space forms ([30],
[31]), and to hypersurfaces in pseudo-Riemannian space forms ([32], [33]). In
particular, the results in these works can be used to characterize the coordinate
Lk-finite-type hypersurfaces.

In [35] the authors, by using results of [4], show that k-minimal Euclidean
hypersurfaces and open portions of hyperspheres are the only Lk-1-type hyper-
surfaces in Rn+1. Next step is the study of Lk-2-type hypersurfaces in Rn+1,
and we find in [35] several results in this direction. In particular, the authors
show that if Mn is a hypersurface with at most two distinct principal curva-
tures, then: (i) Mn is not of Ln−1-null-2-type (Theorem 3.5); (ii) Mn is of
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Lk-null-2-type (k 6= n− 1) if and only if M is locally isometric to a generalized
cylinder (Theorems 3.11 and 3.12).

This paper begins the study of Lk-2-type hypersurfaces of hyperspheres
S
n+1 ⊂ R

n+2. The case k = 0 corresponds to the classical one, which has
been well studied (see e.g. [6], [15], [19], [25], [26]), so we will concentrate in
cases k = 1 and k = 2. After a section devoted to preliminaries and basic
results we proceed, in the third section, to compute some formulae which is
needed to present the examples. In Section 4 we present the main results, that
we can collect in the following classification theorem (see Sections 2 and 3.1 for
definitions and examples):

Main Theorem. Let ψ : M3 → S4 be an orientable Hk-hypersurface, which

is not an open portion of a hypersphere. Then M3 is of Lk-2-type if and only

if M3 is a Clifford tori S1(r1)× S2(r2), r
2
1 + r22 = 1, for appropriate radii, or a

tube T r(V 2) of appropriate constant radius r around the Veronese embedding

of the real projective plane RP 2(
√
3).

2. Preliminaries

In this section, we will recall basic formulae and notions about hypersurfaces
in the unit hypersphere S4 centered at the origin of R5:

S
4 =

{
(x1, x2, x3, x4, x5) ∈ R

5
∣∣∣

5∑

i=1

x2i = 1
}
.

Let ψ : M3 → S
4 ⊂ R

5 be an isometric immersion of a connected orientable hy-
persurfaceM3 with Gauss map N . We denote by ∇0, ∇ and ∇ the Levi-Civita
connections on R5, S4 and M3, respectively. Then the Gauss and Weingarten
formulae are given by

∇0
XY = ∇XY + 〈SX, Y 〉N − 〈X,Y 〉ψ,(1)

SX = −∇XN = −∇0
XN,(2)

for all tangent vector fields X,Y ∈ X(M3), where S : X(M3) −→ X(M3) stands
for the shape operator (or Weingarten endomorphism) of M3, with respect to
the chosen orientation N .

As is well-known, for every point p ∈ M3, S defines a linear self-adjoint
endomorphism on the tangent space TpM , and its eigenvalues κ1(p), κ2(p) and
κ3(p) are the principal curvatures of the hypersurface. The characteristic poly-
nomial QS(t) of S is defined by

QS(t) = det(tI − S) = (t− κ1)(t− κ2)(t− κ3) = t3 + a1t
2 + a2t+ a3,

where the coefficients of QS(t) are given by

a1 = −(κ1 + κ2 + κ3), a2 = κ1κ2 + κ1κ3 + κ2κ3, a3 = −κ1κ2κ3.
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These coefficients can be easily obtained, by making use of the Leverrier–
Faddeev method (see [23, 29]), in terms of the traces of Sj, as follows:

ak = −
1

k

k∑

j=1

ak−jtr(S
j), k = 1, 2, 3, with a0 = 1.

In particular, we obtain the following expressions:

a1 = −tr(S),(3)

a2 = −
1

2
(tr(S2)− tr(S)2),(4)

a3 = −
1

3
(tr(S3)−

3

2
tr(S2)tr(S) +

1

2
tr(S)3).(5)

The k-th mean curvature Hk or mean curvature of order k of M3 is defined
by

(6)
(
3
k

)
Hk = (−1)kak, with H0 = 1.

In particular, we have:

H1 = −
1

3
a1 =

1

3
tr(S), H2 =

1

3
a2, H3 = −a3.

Observe that H1 is nothing but the usual mean curvature H of M3, which is
one of the most important extrinsic curvatures of the hypersurface.

As usual, we say that M3 is an Hk-hypersurface if its k-th mean curvature
Hk is constant. If Hk+1 = 0, then we say thatM3 is a k-minimal hypersurface;
a 0-minimal hypersurface is nothing but a minimal hypersurface in the sphere.

2.1. The Newton transformations

The k-th Newton transformation ofM is the operator Pk : X(M3) → X(M3)
defined by

Pk = (−1)k
k∑

j=0

ak−jS
j .

In particular,

P0 = I, P1 = 3HI − S, P2 = 3H2I − S ◦ P1, P3 = H3I − S ◦ P2.(7)

Note that by Cayley-Hamilton theorem we have P3 = 0. Let us recall that each
Pk(p) is also a self-adjoint linear operator on the tangent hyperplane TpM
which commutes with S(p). Indeed, S(p) and Pk(p) can be simultaneously
diagonalized: if {e1, e2, e3} are the eigenvectors of S(p) corresponding to the
eigenvalues κ1(p), κ2(p), κ3(p), respectively, then they are also the eigenvectors
of Pk(p) with corresponding eigenvalues given by

(8) µi
k
(p) =

3∑

i1<···<ik
ij /∈i

κi1 · · ·κik for every i = 1, 2, 3 and k = 1, 2.
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In particular,

µ1
1
= κ2 + κ3, µ2

1
= κ1 + κ3, µ3

1
= κ1 + κ2,(9)

µ1
2
= κ2κ3, µ2

2
= κ1κ3, µ3

2
= κ1κ2.(10)

We have the following properties of Pk (the proof is algebraic and straightfor-
ward).

Lemma 1. The Newton transformations Pk, k = 1, 2, satisfy:

(a) tr(Pk) = ckHk,

(b) tr(S ◦ Pk) = ckHk+1,

(c) tr(S2 ◦ P1) = 3
(
3HH2 −H3

)
,

(d) tr(S2 ◦ P2) = 3HH3,

where c1 = 6 and c2 = 3.

Now, we recall the notion of divergence of a vector field or an operator.
According to [37, p. 86], for a tensor T the contraction of the new covariant slot
in its covariant differential∇T with one of its original slots is called a divergence
of T . Hence the divergence of a vector field X is the differentiable function
defined as the contraction of the operator ∇X , where ∇X(Y ) := ∇YX , that
is,

div(X) = C(∇X) = tr(∇X) =
∑

i,j

gij 〈∇Ei
X,Ej〉 ,

{Ei} being any local frame of tangent vectors fields, where (gij) represents
the inverse of the metric (gij) = (〈Ei, Ej〉). For an operator T : X(M3) −→
X(M3) we have two divergences: one associated to the (1,1)-contraction C1

1 ,
and another associated to the metric contraction C12; the first contraction
produces a 1-form and the second contraction produces a vector field. We
consider here the second one, so that the divergence of an operator T will be
the vector field div(T ) ∈ X(M3) defined as

div(T ) = C12(∇T ) =
∑

i,j

gij(∇Ei
T )Ej ,

where ∇T (X,Y ) = (∇XT )Y = ∇X(TY )− T (∇XY ).
In the following lemma we present two interesting properties of the Newton

transformations (see Lemma 4 of [32] for details).

Lemma 2. The Newton transformation Pk, for k = 1, 2, satisfies:
a) tr(∇XS ◦ Pk) =

(
3

k+1

)
〈∇Hk+1, X〉.

b) div(Pk) = 0.

Bearing in mind this lemma we obtain

div(Pk(∇f)) = tr
(
Pk ◦ ∇

2f
)
,
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where ∇2f : X(M3) −→ X(M3) denotes the self-adjoint linear operator metri-
cally equivalent to the Hessian of f , given by

〈
∇2f(X), Y

〉
= 〈∇X(∇f), Y 〉 , X, Y ∈ X(M3).

Associated to each Newton transformation Pk, we can define the second-order
linear differential operator Lk : C∞(M3) −→ C∞(M3) by

Lk(f) = tr
(
Pk ◦ ∇2f

)
.(11)

An interesting property of Lk is the following. For every couple of differen-
tiable functions f, g ∈ C∞(M3) we have

Lk(fg) = div
(
Pk ◦ ∇(fg)

)
= div

(
Pk ◦ (g∇f + f∇g)

)

= gLk(f) + fLk(g) + 2 〈Pk(∇f),∇g〉 .(12)

3. First formulas

We are going to compute Lk acting on the coordinate components of the
immersion ψ, that is, a function given by 〈ψ, e〉, where e ∈ R5 is an arbitrary
fixed vector.

A direct computation shows that

(13) ∇〈ψ, e〉 = e⊤ = e− 〈N, e〉N − 〈ψ, e〉ψ,

where e⊤ ∈ X(M3) denotes the tangential component of e. Taking covari-
ant derivative in (13), and using that ∇0

Xe = 0, jointly with the Gauss and
Weingarten formulae, we obtain

(14) ∇X∇〈ψ, e〉 = ∇Xe
⊤ = 〈N, e〉SX − 〈ψ, e〉X

for every vector field X ∈ X(M3). Finally, by using (11) and Lemma 1, we find
that

Lk 〈ψ, e〉 = 〈N, e〉 tr(S ◦ Pk)− 〈ψ, e〉 tr(I ◦ Pk)

= ckHk+1 〈N, e〉 − ckHk 〈ψ, e〉 .(15)

This expression allows us to extend operator Lk to vector functions F =
(f1, . . . , f5), fi ∈ C∞(M3), as follows LkF :=

(
Lkf1, . . . , Lkf5

)
, and then Lkψ

can be computed as

Lkψ =
(
Lk 〈ψ, e1〉 , . . . , Lk 〈ψ, e5〉

)

= ckHk+1

(
〈N, e1〉 , . . . , 〈N, e5〉

)
− ckHk

(
〈ψ, e1〉 , . . . , 〈ψ, e5〉

)

= ckHk+1N − ckHkψ,(16)

where {e1, . . . , e5} stands for the standard orthonormal basis in R5.
Now, we need to compute LkN , and to do that we are going to compute the

operator Lk acting on the coordinate functions of the Gauss map N , that is, the
functions 〈N, e〉 where e ∈ R5 is an arbitrary fixed vector. A straightforward
computation yields

∇〈N, e〉 = −Se⊤.
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From Weingarten formula and (14), we find that

∇X∇〈N, e〉 = −∇X(Se⊤) = −(∇XS)e
⊤ − S(∇Xe

⊤)

= −(∇e⊤S)X − 〈N, e〉S2X + 〈ψ, e〉SX

for every tangent vector field X . This equation, jointly with (11), Lemmas 1
and 2, yields

Lk 〈N, e〉 = −tr(∇e⊤S ◦ Pk)− 〈N, e〉 tr(S2 ◦ Pk) + 〈ψ, e〉 tr(S ◦ Pk)

= −
(

3
k+1

)
〈∇Hk+1, e〉 − tr(S2 ◦ Pk) 〈N, e〉+ ckHk+1 〈ψ, e〉 .(17)

In other words,

(18) LkN = −
(

3
k+1

)
∇Hk+1 − tr(S2 ◦ Pk)N + ckHk+1ψ.

On the other hand, equations (12) and (15) lead to

L2
k 〈ψ, e〉 = ckHk+1Lk 〈N, e〉+ Lk(ckHk+1) 〈N, e〉+ 2ck

〈
Pk(∇Hk+1),∇〈N, e〉

〉

− ckHkLk 〈ψ, e〉 − Lk(ckHk) 〈ψ, e〉 − 2ck
〈
Pk(∇Hk),∇〈ψ, e〉

〉
,

and by using again (15) and (17) we get

L2
k 〈ψ, e〉 = −ck

(
3

k+1

)
Hk+1 〈∇Hk+1, e〉 − 2ck 〈(S ◦ Pk)(∇Hk+1), e〉

− 2ck 〈Pk(∇Hk), e〉

+
[
ckLk(Hk+1)−

(
tr(Pk ◦ S2) + ckHk

)
ckHk+1

]
〈N, e〉

+
[
c2kH

2
k+1 + c2kH

2
k − ckLk(Hk)

]
〈ψ, e〉 .

Therefore, we obtain

L2
kψ = −

ck

2

(
3

k+1

)
∇H2

k+1 − 2ck(S ◦ Pk)(∇Hk+1)− 2ckPk(∇Hk)

+
[
ckLk(Hk+1)−

(
tr(Pk ◦ S2) + ckHk

)
ckHk+1

]
N

+
[
c2kH

2
k+1 + c2kH

2
k − ckLk(Hk)

]
ψ.(19)

Now we suppose that M3 is of Lk-2-type in R5, that is, its position vector
ψ can be written as follows

ψ = a+ ψ1 + ψ2, Lkψ1 = λ1ψ1, Lkψ2 = λ2ψ2,

where a is a constant vector in R5 and ψ1, ψ2 are R5-valued non-constant
differentiable functions on M3.

It is easy to see that Lkψ = λ1ψ1 + λ2ψ2 and L2
kψ = λ21ψ1 +λ22ψ2, and thus

L2
kψ = (λ1 + λ2)Lkψ − λ1λ2(ψ − a).

By using (16) we get

L2
kψ = λ1λ2a

⊤ +
[
(λ1 + λ2)ckHk+1 + λ1λ2 〈N, a〉

]
N

−
[
(λ1 + λ2)ckHk + λ1λ2 − λ1λ2 〈ψ, a〉

]
ψ,
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that, jointly with (19), yields the following equations of Lk-2-type,

λ1λ2a
⊤ = −

ck

2

(
3

k+1

)
∇H2

k+1 − 2ck(S ◦ Pk)(∇Hk+1)− 2ckPk(∇Hk),(20)

λ1λ2 〈N, a〉 = ckLk(Hk+1)−
(
tr(S2 ◦ Pk) + ckHk + λ1 + λ2

)
ckHk+1,(21)

λ1λ2 〈ψ, a〉 = c2kH
2
k+1 + (ckHk + λ1)(ckHk + λ2)− ckLk(Hk).(22)

3.1. Examples of Lk-finite type hypersurfaces in S4

Example 1. Every k-minimal Hk-hypersurface in S4 is of Lk-1-type or Lk-
null-1-type. In fact, from (16) we get that Lkψ = λψ, with λ = −ckHk. If
Hk 6= 0, then M3 is of Lk-1-type, otherwise it is of Lk-null-1-type.

Example 2. Every totally umbilical (and not totally geodesic) hypersurface
in S4 is of Lk-1-type. In fact, ifM3 is totally umbilical, then its shape operator
S is given by S = HI, where H is a non-zero constant. Therefore, Hk and
Hk+1 are also nonzero constants. Since

∇0
X(N +Hψ) = −SX +HX = 0 for all X ∈ X(M3),

we get that N = C −Hψ, where C is a constant vector. Bearing in mind (16)
we find Lkψ = λψ + b, where λ = −ckH

k(H2 + 1) 6= 0 and b = ckH
k+1C.

Then we can write

ψ = ψ0 + ψ1, ψ0 = −
b

λ
and ψ1 = ψ +

b

λ
,

where ψ0 is constant and Lkψ1 = λψ1. Therefore, M
3 is Lk-1-type in R5.

The following result shows that those hypersurfaces in S4 are the only spher-
ical Lk-1-type hypersurfaces in R5.

Proposition 3. k-minimal Hk-hypersurfaces in S4 and open portions of hy-

perspheres in S4 are the only Lk-1-type hypersurfaces in S4.

Proof. Let M3 be a Lk-1-type hypersurface in S4, then its position vector ψ
can be put as ψ = a+ψ1, where a is a constant vector and Lkψ1 = λψ1. Hence
we deduce Lkψ = Aψ + b, with A = λI and b = −λa. The result follows from
Theorems 1.2 and 1.7 in [5]. �

Example 3. Clifford hypersurfaces or standard Riemannian productsM3
r1,r2

=

S
1(r1)×S

2(r2), r
2
1+r

2
2 = 1, are hypersurfaces of Lk-2-type in R

5, for appropriate
radii r1 and r2.

Given 0 < r < 1, let M3(r) = S1(
√
1− r2) × S2(r) ⊂ S4. Observe that

M3(r) is defined by the equation M3(r) = {x ∈ S4 : x23 + x24 + x25 = r2}. In
this case, the Gauss map on M3(r) is given by

N(x) =

(
−r

√
1− r2

x1,
−r

√
1− r2

x2,

√
1− r2

r
x3,

√
1− r2

r
x4,

√
1− r2

r
x5

)
,
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and its principal curvatures in S4 are

κ1 =
r

√
1− r2

and κ2 = κ3 = −

√
1− r2

r
.

Hence we get

H1 =
3r2 − 2

3r
√
1− r2

, H2 =
1− 3r2

3r2
, H3 =

√
1− r2

r
.

If we put ψ1 = (x1, x2, 0, 0, 0) and ψ2 = (0, 0, x3, x4, x5), then ψ = ψ1 +ψ2 and
by using (16) we obtain:

a) L0ψ1 = λ1ψ1 and L0ψ2 = λ2ψ2, where λ1 = 1
r2−1 and λ2 = − 2

r2
.

Therefore, M3(r) is of L0-2-type in R5 for r2 6= 2
3 .

b) L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, where λ1 = 2
r
√
1−r2

and λ2 = 2(1−2r2)

r3
√
1−r2

.

Therefore, M3(r) is of L1-2-type in R5 for r2 6= 1
3 .

c) L2ψ1 = λ1ψ1 and L2ψ2 = λ2ψ2, where λ1 = − 1
r2

and λ2 = 2
r2
. Therefore,

M3(r) is of L2-2-type in R5 for any r.

Recall that a hypersurface Mn is called isoparametric if all the κi are con-
stant functions; this is equivalent to say that all the Hi are constant functions.
The classification problem of isoparametric hypersurfacesMn in a sphere Sn+1

is still open. However, it is known that the number g of distinct principal
curvatures of isoparametric hypersurfaces is either g = 1, 2, 3, 4 or 6 (see [36]).
Cartan classified these hypersurfaces when g ≤ 3 (see e.g. [7, 8, 9]); Clifford
hypersurfaces Sk(r1)× Sn−k(r2) ⊂ Sn+1, r21 + r22 = 1, constitute the case when
g = 2. For g = 3, he showed that such hypersurfaces are tubes of constant radii
around the Veronese embedding of the projective plane FP 2 in S3m+1, where
m = 1, 2, 4 or 8 is the dimension of the standard normed algebra F = R,C,H

or the Cayley algebra O, respectively.

Proposition 4. Let ψ : M3 → S
4 be an orientable hypersurface, which is not

an open portion of a hypersphere. If M3 is an isoparametric hypersurface with

nonzero Hk+1, then M
3 is a hypersurface of Lk-2-type.

Proof. Let λ1 and λ2 be the solutions of the following system of equations:

λ1 + λ2 = −tr(S2 ◦ Pk)− ckHk,

λ1λ2 = ckHktr(S
2 ◦ Pk)− c2kH

2
k+1.

In other words, λ1 and λ2 are the roots of the quadratic equation t2+bt+c = 0,
where b = tr(S2 ◦ Pk) + ckHk and c = ckHktr(S

2 ◦ Pk) − c2kH
2
k+1 are two

constants. Since the discriminant of this equation is b2 − 4c = (tr(S2 ◦ Pk) −
ckHk)

2 + 4c2kH
2
k+1 > 0, we get λ1 6= λ2.

Choose ψ1 and ψ2 as follows:

ψ1 =
1

λ2 − λ1

(
− ckHk+1N + (ckHk + λ2)ψ

)
,
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ψ2 =
1

λ2 − λ1

(
ckHk+1N − (ckHk + λ1)ψ

)
,

where ψ is the position vector of M3 in R5. It is evident that ψ1 + ψ2 = ψ.
On the other hand ψ1 and ψ2 are non-constant R5-valued maps. In fact, if ψ1

(or ψ2) is a constant map we conclude that M3 is totally umbilical in S4 and
thus it is an open portion of a hypersphere, which is not possible. Moreover,
by a straightforward calculation involving equations (16) and (18), we obtain
Lkψ1 = λ1ψ1 and Lkψ2 = λ2ψ2, i.e., M

3 is of Lk-2-type. �

Example 4. Tubes of constant radius r around the Veronese embedding of the
real projective plane RP 2 are hypersurfaces in S4 of Lk-2-type for appropriate
r.

Let (x, y, z) be the standard coordinates of R3 and (u1, . . . , u5) that of R
5.

The mapping φ : R3 → R5 defined by

u1 =
yz
√
3
, u2 =

xz
√
3
, u3 =

xy
√
3
, u4 =

x2 − y2

2
√
3
, u5 =

1

6
(x2 + y2 − 2z2),

gives rise to an isometric immersion of the 2-sphere S2(
√
3) of curvature 1

3 into

the unit sphere S4. This mapping defines an embedding φ̃ of the real projective
plane RP 2(

√
3) into S4, known as the Veronese surface, which is the second

standard immersion of the 2-sphere S2(
√
3).

Let us consider the tube M3(r) = T r(V 2) with radius r over the Veronese
surface V 2 in S4, 0 < r < π/3, and consider ψ : M3(r) → S4 the standard
isometric immersion. It follows from a direct computation that the principal
curvatures of the tube in S

4 are given by

κ1 =
cot r −

√
3

1 +
√
3 cot r

, κ2 =
cot r +

√
3

1−
√
3 cot r

, κ3 = cot r.

Hence we get

H1 =
cot r (3 − cot2 r)

1− 3 cot2 r
, H2 =

3 cot2 r − 1

1− 3 cot2 r
, H3 =

cot r (cot2 r − 3)

1− 3 cot2 r
.

It is direct to verify from here and Theorem 4 that the tube M3(r) is of Lk-2-
type in R5 (for appropriate radius r such that Hk+1 6= 0):

a) In the case k = 0, M3(r) is of L0-2-type in R
5 for r 6= π

6 .

b) In the case k = 1, M3(r) is of L1-2-type in R5 for any r.
c) In the case k = 2, M3(r) is of L2-2-type in R5 for r 6= π

6 .

4. Main results

Hasanis and Vlachos [26] showed that if a hypersurface Mn ⊂ Sn+1 is of
2-type (i.e., of L0-2-type), then it has nonzero constant mean curvature and
constant scalar curvature. If the number of distinct principal curvatures is
less than 4 and Mn is closed, Chang [11] (see also [10, 21]) proved that these
conditions imply that the hypersurface is isoparametric. In particular, we have
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that a 2-type closed hypersurface M3 in the sphere S4 has to be isoparametric.
But we know that M3 ⊂ S4 is an isoparametric hypersurface if and only if
(i) M3 is a round hypersphere S3(r), 0 < r ≤ 1; (ii) M3 is a Clifford tori
S
1(r1)× S

2(r2), r
2
1 + r22 = 1; or (iii) M3 is a tube T r(V 2) of constant radius r

around the Veronese embedding of the real projective plane RP 2.
Hasanis and Vlachos [26] also obtain a converse: if a hypersurface Mn ⊂

Sn+1, which is not an open portion of a hypersphere, has nonzero constant mean
curvature and constant scalar curvature, then it is of 2-type. Bearing in mind
[26] and [11], and the classification of isoparametric hypersurfaces M3 ⊂ S4,
one has the following (see [16]).

Theorem 5. Let ψ : M3 → S4 be a closed orientable hypersurface, which is

not an open portion of a hypersphere. Then M3 is of 2-type if and only if M3

is a Clifford tori S1(r1) × S2(r2), r
2
1 + r22 = 1 and r22 6= 2

3 , or a tube T r(V 2)
of constant radius r 6= π

6 around the Veronese embedding of the real projective

plane RP 2(
√
3).

Our goal is to prove similar results for operators L1 and L2.

Theorem 6. Let ψ : M3 → S4 be an orientable H2-hypersurface. If M3 is of

L2-2-type, then the Gauss-Kronecker curvature H3 is a nonzero constant.

Proof. Let {E1, E2, E3} be a local orthonormal frame of principal directions of
S such that SEi = κiEi for every i = 1, 2, 3, and consider the open set

U3 =
{
p ∈M3 | ∇H2

3 (p) 6= 0
}
.

Our goal is to show that U3 is empty. Otherwise, since we are assuming that
M3 is L2-2-type and H2 is constant, then by taking covariant derivative in (22)
we have

λ1λ2a
⊤ = 9∇H2

3 ,

and using this in (20) we obtain

(S ◦ P2)(∇H
2
3 ) = −

7

2
H3∇H

2
3 on U3.(23)

Since P3 = 0 then S ◦ P2 = H3I and so

(S ◦ P2)(∇H
2
3 ) = H3∇H

2
3 ,

that jointly with (23) implies H3∇H
2
3 = 0 on U3, which is not possible. �

We want to extend last theorem for the operator L1; next theorem is an
intermediate step.

Theorem 7. Let M3 be an orientable Hk-hypersurface of S4, which is not an

open portion of a hypersphere, and consider the following conditions:

a) Hk+1 is a nonzero constant.

b) tr(S2 ◦ Pk) is constant.

c) M3 is of Lk-2-type.
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Then any two conditions imply the third one.

Proof. First, we show that conditions a) and b) imply condition c). From
Lemma 1 we obtain that M3 is an isoparametric hypersurface, and then the
claim follows from Proposition 4.

Secondly, we show that conditions a) and c) imply condition b). By taking
covariant differentiation in equation (21), and bearing in mind (22), we find

ckHk+1X(tr(S2 ◦ Pk)) = −λ1λ2X(〈N, a〉) = λ1λ2
〈
a⊤, SX

〉
= 0,

that is, tr(S2 ◦ Pk) is constant on M
3.

Finally, we show that conditions b) and c) imply condition a). In the case
k = 2, the proof follows directly from Theorem 6. To prove the claim in the
case k = 1, let us consider the open set

U2 = {p ∈M3 | ∇H2
2 (p) 6= 0}.

Our goal is to show that U2 is empty. Since H is constant, by taking covariant
derivative in (22) we obtain that λ1λ2a

⊤ = 36∇H2
2 . Using this in (20) we get

(24) (S ◦ P1)(∇H
2
2 ) = −

15

2
H2∇H

2
2 on U2,

that jointly with equation (7) leads to P2(∇H
2
2 ) =

21
2 H2∇H

2
2 . Now, by apply-

ing the operator S on both sides, we have

(25) (S ◦ P2)(∇H
2
2 ) =

21

2
H2S(∇H

2
2 ).

Since P3 = 0 we get S ◦ P2 = H3I, and then

(S ◦ P2)(∇H
2
2 ) = H3∇H

2
2 ,

that jointly with (25) implies

S(∇H2
2 ) =

2H3

21H2
∇H2

2 .

Without loss of generality, let us assume that E1 is parallel to ∇H2
2 , i.e. the

principal curvature κ1 = 2H3

21H2

. Then we have

(S ◦ P1)(∇H
2
2 ) = κ1µ

1

1
∇H2

2 =
2H3

21H2

(
3H −

2H3

21H2

)
∇H2

2 ,

that jointly with (24) yields the following equation,

6615H3
2 + 252HH2H3 − 8H2

3 = 0.

From Lemma 1 we have that 3H3 = 9HH2− tr(S ◦P1), and then last equation
can be rewritten as follows

6615H3
2 + 684H2H2

2 − 68Htr(S2 ◦ P1)H2 −
8
9 tr(S

2 ◦ P1) = 0.

In other words, H2 is a root of a polynomial with constant coefficients, and so
it is constant. �

An interesting consequence is the following.
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Theorem 8. Let ψ : M3 → S4 be an orientable H2-hypersurface. If M is of

L2-2-type, then M
3 is an isoparametric hypersurface.

Proof. From Theorem 6 we get that H3 is a non-zero constant, and then The-
orem 7 yields that tr(S2 ◦ P2) is constant. Now we use Lemma 1(d) to deduce
that the mean curvature H is constant, and this concludes the proof. �

Another consequence is the following. Let M3 be an isoparametric hyper-
surface, which is not an open portion of a hypersphere, satisfying Hk+1 6= 0.
From Theorem 7 we get M3 is of Lk-2-type. Then the following result, that
extends Theorem 5, is clear.

Theorem 9. Let ψ :M3 → S4 be an orientable H2-hypersurface, which is not

an open portion of a hypersphere. Then M3 is of L2-2-type if and only if M3 is

a Clifford tori S1(r1)×S2(r2), r
2
1 + r

2
2 = 1, or a tube T r(V 2) of constant radius

r 6= π
6 around the Veronese embedding of the real projective plane RP 2(

√
3).

We now state our main result.

Theorem 10. Let ψ : M3 → S4 be an orientable Hk-hypersurface. If M is of

Lk-2-type, then Hk+1 is a nonzero constant.

Proof. Case k = 0 is shown in [26, Theorem 2.1] and case k = 2 has been
proved in Theorem 6, so we can assume k = 1. Let us consider {E1, E2, E3} a
local orthonormal frame of principal directions of S such that SEi = κiEi for
every i = 1, 2, 3. Let us define the open set

U2 = {p ∈M3 | ∇H2
2 (p) 6= 0},

our goal is to show that U2 is empty. Since we are assuming that M3 is L1-2-
type and H is constant, then equation (22) leads to

(26) λ1λ2a
⊤ = 36∇H2

2 .

Using this equation in (20) we have that (S ◦ P1)(∇H
2
2 ) = − 15

2 H2∇H
2
2 on U2,

and substituting this into (7) we obtain

(27) P2(∇H
2
2 ) =

21

2
H2∇H

2
2 on U2.

The vector field ∇H2
2 can be written as ∇H2

2 = E1(H
2
2 )E1 + E2(H

2
2 )E2 +

E3(H
2
2 )E3, and then

P2(∇H
2
2 ) =

3∑

i=1

Ei(H
2
2 )µ

i
2Ei.

Therefore equation (27) is equivalent to

Ei(H
2
2 )

(
µi

2
−

21

2
H2

)
= 0 on U2
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for every i = 1, 2, 3. An immediate and important consequence of this equation
is that Ei(H

2
2 ) = 0 for some i. Otherwise, we deduce that

tr(P2) =

3∑

i=1

µi

2
=

63

2
H2,

that jointly with Lemma 1 leads to H2 = 0 on U2, which is a contradiction.
From that consequence, and without loss of generality, we have to analyze

the following two possible cases.
Case 1 : E1(H

2
2 ) 6= 0, E2(H

2
2 ) 6= 0 and E3(H

2
2 ) = 0.

As µ1
2
= µ2

2
= 21

2 H2 then (κ1 − κ2)κ3 = 0, and therefore κ1 = κ2. Observe

that κi 6= 0 for all i, otherwise H2 = 0. It is easy to see that

κ2κ3 = µ1
2
=

21

2
H2 =

7

2
(κ22 + 2κ2κ3),

and so 7κ2 + 12κ3 = 0. On the other hand, we know that 3H = 2κ2 + κ3 and
then we get κ2 and κ3 are constants. So H2 is also constant, which can not be
possible.

Case 2 : E1(H
2
2 ) 6= 0, E2(H

2
2 ) = 0 and E3(H

2
2 ) = 0.

We know that 3H2 = κ1µ
1
1
+ µ1

2
and µ1

2
= 21

2 H2, then we have

(28) H2 =
2

15
(κ21 − 3Hκ1) and H2

2 = p(κ1),

where p(x) =
(

2
15

)2(
x4 − 6Hx3 + 9H2x2

)
. Observe that H 6= 0; otherwise,

κ2 + κ3 = −κ1 and from (28) we get κ2κ3 = 7
5κ

2
1. Then κ2 and κ3 are the

roots of the equation t2 + κ1t +
7
5κ

2
1 = 0, but this is not possible since the

discriminant of this equation is negative.
We claim that

E1(H
2
2 ) = p′(κ1)E1(κ1),(29)

λ1λ2 〈ψ, a〉 = 36p(κ1) +A0,(30)

λ1λ2 〈N, a〉 = q(κ1) +B0,(31)

where q(x) = −
(
4
5

)2 ( 4
5x

5 − 9H
2 x

4 + 6H2x3
)
, and A0, B0 are two constants.

First, (29) and (30) follow directly from (28) and (22), respectively. On the
other hand, bearing in mind (26) we find that

X(λ1λ2 〈N, a〉) = −λ1λ2
〈
Sa⊤, X

〉
= −36κ1

〈
∇H2

2 , X
〉

= −36κ1X(H2
2 ) = X

(
q(κ1)

)

for any tangent vector field X , and this implies equation (31).
Now, by taking covariant differentiation in (26) in the direction of an arbi-

trary tangent vector field X , we have

λ1λ2∇Xa
⊤ = 36∇X∇H2

2 = 36∇X

(
E1(H

2
2 )E1

)

= 36X
(
E1(H

2
2 )
)
E1 + 36E1(H

2
2 )∇XE1,
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that jointly with (14) yields

(32) 36E1(H
2
2 )∇XE1 = −36X

(
E1(H

2
2 )
)
E1 + λ1λ2

(
〈N, a〉SX − 〈ψ, a〉X

)
,

or equivalently
(33)
36E1(H

2
2 ) 〈∇XE1, Ei〉 = −36X

(
E1(H

2
2 )
)
δ1i + λ1λ2

(
〈N, a〉κi − 〈ψ, a〉

)
〈X,Ei〉

for i = 1, 2, 3. If we take X = E1, then (33) reduces to the following equations

36E1(E1(H
2
2 )) = λ1λ2

(
〈N, a〉κ1 + 〈ψ, a〉

)
,

E1(H
2
2 ) 〈∇E1

E1, Ei〉 = 0, i = 2, 3.

From the last equation we conclude that ∇E1
E1 = 0, that is, the integral curves

of E1 on U2 are geodesics of M3.
Let X be a tangent vector field orthogonal to E1. Then equation (33) for

i = 1 leads to X(E1(H
2
2 )) = 0 and thus (32) yields

(34) 36E1(H
2
2 )∇XE1 = λ1λ2

(
〈N, a〉SX − 〈ψ, a〉X

)
, ∀ X ⊥ E1.

From the Codazzi equation (∇Ej
S)E1 = (∇E1

S)Ej , we get

E1

(
κj
)
= (κ1 − κj)

〈
∇Ej

E1, Ej

〉
, j = 2, 3,

that jointly with (34) for X = Ej yields

36E1(H
2
2 )E1(κj) = (κ1 − κj)

[
λ1λ2 〈N, a〉κj − λ1λ2 〈ψ, a〉

]

= −λ1λ2 〈N, a〉κ
2
j + λ1λ2 〈N, a〉κ1κj + λ1λ2 〈ψ, a〉κj

− λ1λ2 〈ψ, a〉κ1.

Last equation implies

36E1(H
2
2 )

3∑

j=2

E1(κj) = −λ1λ2 〈N, a〉

3∑

j=2

κ2j + λ1λ2 〈N, a〉κ1

3∑

j=2

κj

+ λ1λ2 〈ψ, a〉

3∑

j=2

κj − 2λ1λ2 〈ψ, a〉κ1,

that is,

36E1(H
2
2 )E1(3H− κ1) = −λ1λ2 〈N, a〉 (tr(S

2)− κ21) + λ1λ2 〈N, a〉κ1(3H− κ1)

+ λ1λ2 〈ψ, a〉 (3H − κ1)− 2λ1λ2 〈ψ, a〉κ1.

By using (28) and (29), last equation can be written as

36p′(κ1)
[
E1(κ1)

]2
= −

1

5
λ1λ2 〈N, a〉 (4κ

2
1 + 3Hκ1 − 45H2)(35)

+ 3λ1λ2 〈ψ, a〉 (κ1 −H).

A direct computation shows

362
[
p′(κ1)E1(κ1)

]2
= 362

[
E1(H

2
2 )
]2

= 362
〈
∇H2

2 ,∇H
2
2

〉
= λ21λ

2
2|a

⊤|2(36)

= λ21λ
2
2|a|

2 − (λ1λ2 〈N, a〉)
2 − (λ1λ2 〈ψ, a〉)

2.
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From equations (35) and (37), and taking into account (30) and (31), we find
a polynomial T (x) with constant coefficients given by

T (x) =
[
q(x) +B0

]2
+
[
36p(x) +A0

]2

− 36
5

[
q(x) +B0

]
(4x+ 15H)(x− 3H)p′(x)

+ 108
[
36p(x) +A0

]
(x−H)p′(x)− λ21λ

2
2|a|

2,(37)

and satisfying T (κ1) = 0. Therefore, κ1 is locally constant on U2, and so is H2,
which is a contradiction with the definition de U2. This finishes the proof. �

An interesting consequence is the following result, similar to Theorem 8.

Theorem 11. Let ψ : M3 → S4 be an orientable H-hypersurface. If M3 is of

L1-2-type, then M
3 is an isoparametric hypersurface.

Proof. From Theorem 10 we get that H2 is a non-zero constant, and then
Theorem 7 yields that tr(S2 ◦ P1) is constant. Now we use Lemma 1(c) to
deduce that the Gauss-Kronecker curvature H3 is constant, and this concludes
the proof. �

Bearing in mind Theorems 7 and 11, and the classification of isoparametric
hypersurfacesM3 in the sphere S4, the following result, that extends Theorems
5 and 9, is clear.

Theorem 12. Let ψ :M3 → S4 be an orientable H-hypersurface, which is not

an open portion of a hypersphere. Then M3 is of L1-2-type if and only if M3

is a Clifford tori S1(r1)× S2(r2), r
2
1 + r22 = 1 and r22 6= 1

3 , or a tube T r(V 2) of
constant radius r around the Veronese embedding of the real projective plane

RP 2(
√
3).
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