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Lp-SOBOLEV REGULARITY FOR INTEGRAL

OPERATORS OVER CERTAIN HYPERSURFACES

Yaryong Heo, Sunggeum Hong, and Chan Woo Yang

Abstract. In this paper we establish sharp Lp-regularity estimates for
averaging operators with convolution kernel associated to hypersurfaces
in Rd(d ≥ 2) of the form y 7→ (y, γ(y)) where y ∈ Rd−1 and γ(y) =
∑d−1

i=1 ±|yi|
mi with 2 ≤ m1 ≤ · · · ≤ md−1.

1. Introduction

In this paper we consider averaging operators along hypersurfaces in Rd

(d ≥ 2) of the form y 7→ (y, γ(y)) where y ∈ Rd−1 and γ(y) =
∑d−1

i=1 ±|yi|
mi

with 2 = m0 ≤ m1 ≤ · · · ≤ md−1 < md = ∞. For smooth functions f on Rd,
we consider averaging operators A defined by

(1.1) Af(x) =

∫

Rd−1

f(x− (y, γ(y))χ(y) dy,

where χ is a smooth function with a compact support near the origin with
χ(0) 6= 0. For α ≥ 0 and 1 < p < ∞ we denote by Lp

α(R
d) the Lp-Sobolev

space with the norm

(1.2) ‖f‖Lp
α(Rd) =

∥∥[ (1 + | · |2)
α
2 f̂ ]∨

∥∥
Lp(Rd)

.

When d = 2 andm1 = 2, the curve y1 7→ (y1, γ(y1)) = (y1, y
2
1) has nonvanishing

Gaussian curvature, and the operator A maps Lp into Lp
α, where α = α(p) =

1/p for 2 ≤ p < ∞. It is well-known that the value of α(p) = 1/p is optimal
for all p in this range. By duality if 1 < p < 2, the value for α is 1/p′,
where p′ is the Hölder conjugate of p. The case of curves in R2 with vanishing
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Gaussian curvature, that is, m1 > 2 and γ(y1) = ym1
1 , has been considered

by M. Christ in [1]. He proved that A maps Lp into Lp
β if either p 6= m1 and

β ≤ min(1/p, 1/m1), or p = m1 and β < min(1/p, 1/m1). He also proved that
the results can not be improved in the sense that when p = m1, strong estimates
for β = min(1/p, 1/m1) is not available. Higher dimensional situations, that
is, the cases d ≥ 3 have been investigated by Nagel, Seeger and Wainger in [4].
They obtained a sharp condition which leads to optimal Lp-Sobolev estimates
for maximal operators associated with convex hypersurfaces of finite type on
the edges of 1/p near 0 and 1. We refer interested readers to results by Iosevich,
Sawyer and Seeger in [3] with hypersurfaces in R3 satisfying ‘finite line type
conditions’.

The purpose of this paper is to develop tools for drawing complete pictures of
the sharp Lp-Sobolev estimates for averaging operator A for d ≥ 2. It is worthy
of pointing out that the surfaces we consider in this paper are not necessarily
convex because of the ± signs and one can easily see that the arguments are
independent of choices of signs. So in what follows we only consider the case

where γ(y) =
∑d−1

i=1 |yi|
mi . To state the main theorem we first let 2 ≤ p < ∞

and define νk and α(p) by

(1.3) νk =

d−1∑

j=k

1

mj
, k = 1, . . . , d− 1; νd = 0

and

(1.4) α(p) :=
d

min
k=1

(
νk +

k − 1

p

)
.

α is a piecewise linear function of 1/p whose linear piece can be written as
follows: for each k = 1, . . . , d,

α(p) := νk +
k − 1

p
if

1

mk
<

1

p
≤

1

mk−1
.

Figure 1 illustrates the graph of the function α in 1
p α-plane when d = 4. We

note that the graph for 1/2 ≤ 1/p < 1 is obtained by reflection about the
vertical line 1/p = 1/2.

In this paper we shall prove the following theorem:

Theorem 1.1. For 2 ≤ p < ∞ and 2 ≤ m1 ≤ · · · ≤ md−1, the operator A
maps Lp to Lp

α if and only if either p = mi and α < α(p), or p 6= mi and

α ≤ α(p) where 1 ≤ i ≤ d− 1 for d ≥ 2.

Remark 1.2. (1) The indicated range of parameters p and α can not be im-
proved in the sense of unboundedness of Lp → Lq estimates under the appro-
priate affine transformation between the optimal domain of Lp → Lp

α bounds
and that of Lp → Lq bounds (See Section 3).

(2) As is elucidated in Figure 1, estimates for the cases 1 < p < 2 can be
immediately established by duality arguments as soon as we prove Theorem
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Figure 1. Boundedness of A when d = 4

1.1 and this is the reason why we only consider the cases 2 ≤ p < ∞ in the
theorem.

(3) It is unlikely that A has sharp Lp → Lp
α(p) property at the corner points

of the optimal domain, which are circled dots in Figure 1. The best results up
to this point are Lm1,2 → Lm1

1/m1
estimates obtained by Seeger and Tao in [6]

when d = 2 and γ(y1) = ym1
1 .

We shall need the following notation:

Notation. (1) For two quantities A and B, we shall write A . B if A ≤
CB for some positive constant C, depending on the dimension and
possibly other parameters apparent form the context. We write A ∼ B
if A . B and B . A.

(2) The Lebesgue measure of a set E is denoted by |E|.
(3) The set of all integers, nonnegative integers, and positive integers are

denoted by Z, Z+, and N, respectively.
(4) For a set A and a positive integer n, An := {(a1, . . . , an) | ai ∈ A}.
(5) For a positive integer n and a = (a1, . . . , an) ∈ Zn we define |ℓ|1 by

|a|1 = |a1|+ · · ·+ |an|.

The idea of proving Theorem 1.1 starts from taking a look into averaging
operators Ti along curves in R2 of the form yi 7→ (yi, |y

mi |) where i = 1, . . . , d−
1. According to the results by M. Christ in [1], critical indices αi(p) of Ti are
of the form αi(p) = min(1/p, 1/mi). It is easy to see that the critical index
α(p) of our operator A can be written as

(1.5) α(p) =

d−1∑

i=1

αi(p).
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The fact that the function γ(y) =
∑d−1

i=1 |yi|
mi has no mixed term tempts

us to take into account modified operators T̃i averaging along curves yi 7→
yiui+|yi|

miud where uj is the standard unit vector in Rd whose j-th component
is equal to 1 and other components are all 0’s. In crude terms, the operator

A can be realized by composing T̃i’s, that is, A = T̃1 ◦ · · · ◦ T̃d−1 modulo
ignorance of the smooth cut-off function χ which is a localized factor of the
averaging operator A. It is highly likely that during composing d− 1 operators

T̃i, properties of T̃i’s, which improve differentiability of input function f , are
added up to our aimed critical index α(p). However it would be a little bit
rash if one deems that this explains all of the details of Theorem 1.1 because

T̃i improves the differentiability along only two directions ui and ud.
Before we proceed to the next section, we make a preliminary remark on the

cut-off function χ in (1.1). Without loss of generality we may assume that our
original cut-off function χ is a tensor product of d− 1 cut-off functions of one
variable. To see this we first write χ(y) = χ(y)χ̄(y) where χ̄ is a smooth cut-off
function whose values are identically equal to 1 on the support of χ and χ̄ is
of the form χ̄(y) = χ̄(y1) · · · χ̄(yd−1). If we express χ as the Fourier series, say,
χ(y) =

∑
n∈Zd−1 cne

in·y where cn has a fast decay in |n|. We then write

χ(y) =
∑

n=(n1,...,nd−1)∈Zd−1

cn

d−1∏

j=1

einjyj χ̄(yj),

that is, χ is the infinite summation of functions of the type of tensor product
of d − 1 one-variable cut-off functions. Due to the fast decay of cn in |n|, the
results with einjyj χ̄(yj) implies those with χ(y).

2. Proof of Theorem 1.1

We take the Fourier transform Âf of Af to write

Âf(ξ) = f̂(ξ)

∫

Rd−1

eiξ·(y,γ(y))χ(y) dy = m(ξ)f̂(ξ).

As is explained in the previous section we may assume that the cut-off function
χ in (1.1) is a tensor product of d− 1 cut-off functions of one variable and we
abuse notation to write χ(y) = χ(y1) · · ·χ(yd−1), then we are able to write m
as

(2.1) m(ξ) =
d−1∏

i=1

∫

R

ei(ξiyi+ξd|yi|
mi )χ(yi) dyi.

Ψ1 be a smooth radial function supported in {ξ ∈ Rd : |ξ| ≤ 1}, which satisfies
Ψ1(ξ) = 1 when |ξ| ≤ 1

2 . One can easily see that there are homogeneous
functions Ψ2 and Ψ3 satisfying the conditions that Ψ2 is supported in {ξ =

(ξ1, . . . , ξd) : |ξ| ≥ 1
2 and |ξd| ≤

|ξ|
M }, Ψ3 is supported in {ξ = (ξ1, . . . , ξd) :

|ξ| ≥ 1
2 and |ξd| ≥

|ξ|
2M }, and Ψ1+Ψ2+Ψ3 ≡ 1, whereM is chosen to be so large
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that the following arguments hold. We first decompose A as A = A1+A2+A3,

where Âif(ξ) = Ψi(ξ)Âif(ξ). We can see that in view of the compactness of
the support Ψ1 the operator A1 has an enough Lp-Sobolev estimates for our
purpose. Due to the support condition of Ψ2, there exists at least one j ∈
{1, . . . , d−1} such that |ξ| ≈ |ξj | >> |ξd|. In this case we perform integration by
parts in the j-th factor of the right-hand side of (2.1) as many time as we obtain
enough decay of |ξ| for proving desired Lp-Sobolev estimates for A2. Hence it
suffice to only consider A3. To avoid the complexity of indices we abuse the
notation to set A := A3 with the assumption that the multiplier of the operator

A is supported in {ξ = (ξ1, . . . , ξd) : |ξ| ≥ 1
2 and |ξd| ≥

|ξ|
2M }. Throughout this

section we fix index sets I = {1, . . . , µ} and I
′ = {µ+ 1, . . . , d− 1}. Since the

proof will be gone through via decomposing the operator A into dyadic pieces,
we shall need various types of cut-off functions.

Definition. (1) Let ψ be a smooth radial function in Rd whose Fourier trans-

form ψ̂ is supported in {ξ : 1/2 < |ξ| ≤ 2}.
(2) Let η0 be a function on R such that η̂0 ∈ C∞

0 (R), η̂0(s) = 1 for |s| ≤ 1/2,
and η̂0(s) = 0 for |s| > 1 and let η be a function defined by η̂(s) = η̂0(s)−η̂0(2s).

(3) Let ϕ0 be a function on R, which has the same properties as η̂0 above
and let ϕ be a function defined by ϕ(t) = ϕ0(t)− ϕ0(2t).

(4) N = {(n1, . . . , nd−1) ∈ Zd−1 : nj ≥ 0 if j ∈ I, and nj ≤
k
mj

if j ∈ I
′}.

(5) L = {(ℓµ+1, . . . , ℓd−1) ∈ Zd−µ−1 : j ∈ I and ℓj ≥ − k
mj

}.

(6) For a complex number z, the real part of z is denoted by ℜ(z).

(7) ν(I) =
∑d−1

i=µ+1
1
mi

.

If φ is either ϕ or η̂ in Definition (2), then we clearly have

(2.2) 1 = φ0(t) +

∞∑

n=1

φ(2−nt) := φ0(t) +

∞∑

n=1

φn(t) for all t

and

(2.3) 1 =
∞∑

n=1

φ(2nt) =
∞∑

n=1

φ−n(t) for all 0 < |t| < 1/4.

For k ∈ N, we define operators Pk by

(2.4) P̂k(f)(ξ) = ψ̂(2−kξ)f̂(ξ).

For k ∈ N, n = (n1, . . . , nd−1) ∈ N, ℓ = (ℓµ+1, . . . , ℓd−1) ∈ L, y = (y1, . . .,
yd−1) ∈ Rd−1, and ξ = (ξ1, . . . , ξd) ∈ Rd, we define ψk

I′ and ϕk
n
by

ψ̂k
ℓ (ξ) = ψ̂(2−kξ)

∏

j∈I′

η̂ℓj (2
− k

mj ξj)

and

ϕk
n
(y) =

∏

i∈I

ϕ−ni
(yi)χi(yi)×

∏

j∈I′

ϕnj
(2

k
mj yj)χj(yj).
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Now we define operators Ak
n,ℓ by

(2.5) Âk
n,ℓf(ξ) = f̂(ξ)ψ̂k

ℓ (ξ)

∫

Rd−1

eiξ·(y,γ(y))ϕk
n
(y) dy

and the multiplier Jk
n,ℓ of Ak

n,ℓ by

Jk
n,ℓ(ξ) = ψ̂k

ℓ (ξ)

∫

Rd−1

eiξ·(y,γ(y))ϕk
n
(y) dy.

Lemma 2.1 (Van der Corput). Suppose that φ is real-valued and smooth in

(a, b), and that |φ(k)(x)| ≥ 1 for all x ∈ (a, b) with the additional conditions

k ≥ 2, or k = 1 and φ′(x) is monotonic. Then
∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣∣ ≤ Ckλ
−1/k

[
|ψ(b) +

∫ b

a

|ψ′(x)|dx

]
,

where Ck is independent of φ, ψ, and λ.

Lemma 2.2. We define I
′′ by I

′′ = { j ∈ I
′ : (mj − 1)nj . ℓj }. Then for

n = (n1, . . . , nd−1) ∈ N and ℓ = (ℓµ+1, . . . , ℓd−1) ∈ L, and for any N > 0 we

have

(2.6) |Jk
n,ℓ(ξ)| . 2−k(µ

2 +ν(I))2
∑

i∈I

(mi−2)ni
2 2−

∑
j∈I′

(mj−2)nj
2 2−

∑
j∈I′′ |ℓj|.

Proof. To prove the lemma we consider two cases, j ∈ I∪ (I′ \ I′′) and j ∈ I
′′.

When j ∈ I∪(I′\I′′) and j ∈ I
′′, we apply Lemma 2.1 and integration by parts

with respect to yj, respectively. The reason why we are able to use integration
by parts when j ∈ I

′′ is because the phase ξjyj + ξd|yj |
mj is dominated by the

linear term in this case. If we define Jk
n,ℓ,j(ξ) as

Jk
n,ℓ,j(ξ) =

∫

R

ei(ξjyj+ξd|yj|
mj )ϕ−nj

(yj)χj(yj) dyj

for j ∈ I and

Jk
n,ℓ,j(ξ) = η̂ℓj (2

− k
mj ξj)

∫

R

ei(ξjyj+ξd|yj|
mj )ϕnj

(2
k

mj yj)χj(yj) dyj

for j ∈ I
′, then we can write Jk

n,ℓ(ξ) as

Jk
n,ℓ(ξ) = ψ̂(2−kξ)

d−1∏

j=1

Jk
n,ℓ,j(ξ).

When j ∈ I ∪ (I′ \ I
′′) we apply Lemma 2.1 above and use the fact that

|ξd| ∼ |ξ| ∼ 2k in the support of ψ̂(2−kξ) to obtain

∣∣Jk
n,ℓ,j(ξ)

∣∣ . 2−
k
2 2

(mj−2)nj

2

for j ∈ I and
∣∣Jk

n,ℓ,j(ξ)
∣∣ . 2−

k
2 (2

− k
mj

+nj
)−

mj−2

2 = 2
− k

mj 2−
(mj−2)nj

2
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for j ∈ I
′ \ I′′.

When j ∈ I
′′, we first observe that the definition ℓj & (mj − 1)nj of I′′ and

the support condition t ∼ 2
− k

mj
+nj

of ϕnj
(2

k
mj yj) imply

|∂yj
(ξjyj + ξd|yj |

mj ) | & |ξj |,

and employ integration by parts with respect to yj twice to obtain

|Jk
n,ℓ,j(ξ)| . (2

k
mj

−nj
)2−1|ξj |

−2 . 2
k

mj
−nj

(2
k

mj
+ℓj

)−2 . 2
− k

mj 2−
(mj−2)nj

2 2−ℓj .

Now it is easy to see that by taking the product of all factors we finally obtain
the desired estimates. �

Lemma 2.3. For 1/mµ+1 < 1/p < 1/mµ there exists an ǫ(p) > 0 such that

‖Ak
n,ℓ‖Lp→Lp . 2−ǫ(p)(|n|1+|ℓ|1)2−kα(p).

Proof. In view of Lemma 2.2 and the support conditions of yj ’s we obtain

‖Ak
n,ℓ‖L2→L2 . 2−k(µ

2 +ν(I))2
∑

j∈I

(mj−2)nj
2 2−

∑
j∈I′

(mj−2)nj
2 2−

∑
j∈I′′ |ℓj |

and

‖Ak
n,ℓ‖L∞→L∞ . 2−kν(I)2−

∑
j∈I

nj2
∑

j∈I′ nj ,

respectively. We apply the interpolation to obtain

‖Ak
n,ℓ‖Lp→Lp . ‖Ak

n,ℓ‖
2
p

L2→L2‖A
k
n,ℓ‖

1− 2
p

L∞→L∞

. 2−kα(p)2−
∑

j∈I
(1−

mj

p
)nj2−

∑
j∈I′ (

mj

p
−1)nj2−(1− 2

p
)
∑

j∈I′′ |ℓj|,

which completes the proof. �

2.1. Endpoint estimates for 1

mµ+1
<

1

p
<

1

mµ

By Littlewood-Payley theory it suffices to prove the vector-valued inequality

(2.7)

∥∥∥∥
(∑

k>0

∣∣2kα(p)Ak
n,ℓfk

∣∣2
)1/2∥∥∥∥

p

. 2−ǫ(p)(|n|1+|ℓ|1)

∥∥∥∥
(∑

k>0

|fk|
2
)1/2∥∥∥∥

p

for 1
mµ+1

< 1
p <

1
mµ

.

Let us consider the anisotropic dilations

x→ tPx = exp(P log t)x,

where P is a real n × n-matrix with the real parts of the eigenvalues being
contained in (a0, a

0), a0 > 0. Define the P homogeneous distance function;
this means ρ(tPx) = tρ(x), x ∈ Rd, t > 0, and ρ(x) > 0, x 6= 0. Let W be the
collection of all ρ-balls

Q = {x : ρ(x− x0) ≤ 2k}, x0 ∈ R
d, k ∈ Z.
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The Hardy-Littlewood maximal operator with respect to W is defined for the
functions with values in a Banach-space B by

Mf(x) := sup
x∈Q∈W

1

|Q|

∫

Q

|f(y)|B dy.

By f ♯ we denote the Fefferman-Stein sharp maximal function, defined by

f ♯(x) = sup
x∈Q∈W

1

|Q|

∫

Q

|f(y)− fQ|Bdy,

where fQ = |Q|−1
∫
Q f(y)dy. The following proposition is taken from [5].

Proposition 2.4. Assume that 1 < p < ∞, 1 ≤ p0 ≤ p and f ∈ Lp0(Rd, B).
If f ♯ ∈ Lp(Rd), then Mf ∈ Lp(Rd) and ‖Mf‖p ≤ c‖f ♯‖p.

We consider a d× d diagonal matrix P of the form

P =




a1 0 0 · · · 0
0 a2 0 · · · 0
... 0

. . . 0
...

0 · · · 0 ad−1 0
0 · · · 0 0 ad



,

where ai = 1 for 1 ≤ i ≤ µ or i = d and ai =
1
mi

for µ+ 1 ≤ i ≤ d − 1. Then
we have

ρ(x) :=
d

max
i=1

(
|xi|

1/ai

)
, and B = ℓ2(N).

We let β(z) = µz
2 + ν(I) and define a complex family of operators Sz

n,ℓ on

Lp(ℓ2) by

Sz
n,ℓF (x) =

{
2kβ(z)Ak

n,ℓfk(x)
}∞

k=1
where F = {fk} ∈ Lp(ℓ2).

We note that β(2/p) = α(p). The remaining of this section is devoted to prove
the following lemma:

Lemma 2.5. If 1
mµ+1

< 1
p <

1
mµ

and z = 2
p , then

∥∥(Sz
n,ℓF )

♯
∥∥
Lp . 2−ǫ(p)(|ℓ|1+|n|1)‖F‖Lp(ℓ2).

If we prove Lemma 2.5, then

∥∥Sz
n,ℓF

∥∥
Lp(ℓ2)

≤
∥∥M

(
Sz
n,ℓF

)∥∥
Lp

.
∥∥(Sz

n,ℓF )
♯
∥∥
Lp . 2−ǫ(p)(|ℓ|1+|n|1)‖F‖Lp(ℓ2),

which gives (2.7).
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Proof of Lemma 2.5

In order to apply interpolation arguments as in [5], we use linearized oper-
ators T z

n,ℓ of the operators F → (Sz
n,ℓF )

♯, which is defined as follows:

We first define operators T k,z
n,ℓ of the form

T k,z
n,ℓ f(x) = 2kβ(z)

1

|Qx|

∫

Qx

[
Ak

n,ℓf(y)− [Ak
n,ℓf ]Qx

]
gk(x, y)dy,

where Qx is a ball in W containing x ∈ Rd with radius δx, gk(x, y)’s are
measurable functions with

(∑

k

|gk(x, y)|
2

)1/2

≤ 1

for y ∈ Qx, and [Ak
n,ℓf ]Qx

≡ 1
|Qx|

∫
Qx

Ak
n,ℓf(u)du. We now define T z

n,ℓ as

T z
n,ℓF (x) =

∑

k>0

T k,z
n,ℓ fk(x).

The ball Qx ∈ W and measurable functions gk(x, y) can be suitably chosen so
that the following inequality holds:

(Sz
n,ℓF )

♯(x) ≤ 2|T z
n,ℓF (x)|.

Hence the proof of Lemma 2.5 can be completed if one is able to show that for
z = 2

p ,

‖T z
n,ℓF‖Lp ≤ C2−ǫ(p)(|n|1+|ℓ|1)‖F‖Lp(ℓ2),

with a constant C independent of the choice of Qx and gk. We define index
sets I1, I2, and I3 for k as

I1 = {k ∈ Z+ : 2−N(|n|1+|ℓ|1) ≤ 2kδx ≤ 2N(|n|1+|ℓ|1)};

I2 = {k ∈ Z+ : 2kδx ≥ 2N(|n|1+|ℓ|1)};

I3 = {k ∈ Z+ : 2kδx ≤ 2−N(|n|1+|ℓ|1)},

where N > is chosen so that the following arguments hold. We split T z
n,ℓF as

T z
n,ℓF = Iz

n,ℓF + IIz
n,ℓF + IIIz

n,ℓF , where

In,ℓF (x) =
∑

k∈I1

T k,z
n,ℓ fk(x);

IIn,ℓF (x) =
∑

k∈I2

T k,z
n,ℓ fk(x);

IIIn,ℓF (x) =
∑

k∈I3

T k,z
n,ℓ fk(x).
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By Hölder’s inequality we obtain the pointwise estimates for the main term
Iz
n,ℓF (x) of the form

|I
2
p

n,ℓF (x)| .
1

|Qx|

∫

Qx

( ∑

k∈I1

22kβ(2/p)
∣∣Ak

n,ℓfk(y)− [Ak
n,ℓfk]Qx

∣∣2
)1/2

dy

. (1 + |n|1 + |ℓ|1)
1/2−1/p

(∑

k>0

[
2kβ(2/p)M(Ak

n,ℓfk)
]p)1/p

(x).

Now we apply Lemma 2.3 to obtain
∥∥∥∥I

2
p

n,ℓF

∥∥∥∥
p

. (1 + |n|1 + |ℓ|1)
1/2−1/p sup

k

(
2kβ(2/p)‖Ak

n,ℓ‖Lp→Lp

)
‖F‖Lp(ℓp)

. (1 + |n|1 + |ℓ|1)
1/2−1/p2−ǫ(p)(|n|1+|ℓ|1)‖F‖Lp(ℓ2).

For the operators IIn,ℓ and IIIn,ℓ we prove that if ℜ(z) = 1, then

(2.8) ‖IIz
n,ℓF‖2 + ‖IIIz

n,ℓF‖2 . sup
k

(
2kβ(1)‖Ak

n,ℓ‖L2→L2

)
‖F‖L2(ℓ2),

and if ℜ(z) = 0, then

(2.9)

‖IIz
n,ℓF‖∞ + ‖IIIz

n,ℓF‖∞

.
[
sup
k

(
2kβ(0)‖Ak

n,ℓ‖L2→L2

)
+ 2−N(|n|1+|ℓ|1)

]
‖F‖L∞(ℓ2).

Then by interpolating (2.8) and (2.9) we obtain that when z = 2
p ,

∑

n,ℓ

(∥∥IIz
n,ℓF

∥∥
p
+
∥∥IIIz

n,ℓF
∥∥
p

)

.
∑

n,ℓ

[
sup
k

(
2kβ(1)‖Ak

n,ℓ‖L2→L2

)] 2
p

×
[
sup
k

(
2kβ(0)‖Ak

n,ℓ‖L2→L2

)
+ 2−N(|n|1+|ℓ|1)

]1− 2
p

‖F‖Lp(ℓ2)

. ‖F‖Lp(ℓ2).

For (2.8), we first obtain the pointwise estimates of the form

|IIn,ℓF (x)| ≤
1

|Qx|

∫

Qx

( ∑

k∈I2

2kβ(1)
∣∣∣Ak

n,ℓfk(y)− [Ak
n,ℓfk]Qx

∣∣∣|gk(x, y)|
)
dy

≤
(∑

k>0

22kβ(1)
[
M(Ak

n,ℓfk)
]2)1/2

(x).

We therefore have

‖IIz
n,ℓF‖2 ≤

(∑

k>0

22kβ(1)‖M(Ak
n,ℓfk)‖

2
2

)1/2
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≤
(∑

k>0

22kβ(1)‖Ak
n,ℓfk‖

2
2

)1/2

≤ sup
k

(
2kβ(1)‖Ak

n,ℓ‖L2→L2

)
‖F‖L2(ℓ2)

when ℜ(z) = 1. The argument for IIIz
n,ℓ is exactly analogous.

For (2.9), we note that for ℜ(z) = 0

IIz
n,ℓF (x) ≤

2

|Qx|

∫

Qx

( ∑

k∈I2

22kβ(0)
∣∣Ak

n,ℓfk(y)
∣∣2
)1/2

dy.

For each x ∈ Rd, we put

Un(x) =
⋃

k∈I2

{
y : ρ(x− y + γ(s)) . δx for some s ∈ supp(ϕk

n
)
}
.

Lemma 2.6. If k ∈ I2, then

|Un(x)| . δβ(0)+1
x .

Proof. By the definition of I2, δx ≥ 2−k2N(|n|1+|ℓ|1). We note that if s =

(s1, . . . , sd−1) ∈ supp(ϕk
n
), then |si| ∼ 2−ni for i = 1, . . . , µ and |si| ∼ 2

− k
mi

+ni

for i = µ+ 1, . . . , d− 1. We define U1
n
⊂ Rd−µ−1 and U2

n
⊂ Rµ+1 as

U1
n
= {(zµ+1, . . . , zd−1) : |xi − zi + si| . δ

1
mi
x }

and

U2
n
=
{
(z1, . . . , zµ, zd) : |xi − zi + si| . δx(i = 1, . . . , µ) and

∣∣∣∣∣xd − yd +

d−1∑

i=1

|si|
mi

∣∣∣∣∣ . δx

}
.

If y = (y1, . . . , yd) ∈ Un(x), then it is clear that there exists s ∈ supp(ϕk
n
) such

that

(yµ+1, . . . , yd−1) ∈ U1
n

and

(y1, . . . , yµ, yd) ∈ U2
n
.

By using this one can easily see that

|Un(x)| ≤ |U1
n
| × |U2

n
|.

Since for (yµ+1, . . . , yd−1) ∈ U1
n

|xi − yi| . δ
1

mi
x + |s| . δ

1
mi
x + 2

− k
mi

+ni . δ
1

mi
x ,

we obtain the size estimates for U1
n

|U1
n
| . δβ(0)x .
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For U2
n
, we make use of a simple size estimates |U2

n
| . δx to obtain the desired

inequality

|Un(x)| . δβ(0)+1
x . �

Now we turn to the proof of Lemma 2.5. We observe

IIz
n,ℓF (x)| ≤ 2 [IIn,ℓ,1F (x) + IIn,ℓ,2F (x)] ,

where

IIn,ℓ,1F (x) =
1

|Qx|

∫

Qx

( ∑

k∈I2

22kβ(0)
∣∣Ak

n,ℓ[χUn(x)fk](y)
∣∣2
)1/2

dy,

IIn,ℓ,2F (x) =
1

|Qx|

∫

Qx

( ∑

k∈I2

22kβ(0)
∣∣Ak

n,ℓ[χRd\Un(x)fk](y)
∣∣2
)1/2

dy.

For IIn,ℓ,1F (x) we use Lemma 2.6 to obtain

IIz
n,ℓ,1F (x) ≤

( 1

|Qx|

∫

Qx

∑

k∈I2

22kβ(0)
∣∣Ak

n,ℓ[χUn(x)fk](y)
∣∣2dy

)1/2

. sup
k∈I2

(
2kβ(0)‖Ak

n,ℓ‖L2→L2

)( 1

|Qx|

∑

k

‖χUn(x)fk‖
2
2

)1/2

. sup
k∈I2

(
2kβ(0)‖Ak

n,ℓ‖L2→L2

)( |Un(x)|

|Qx|

) 1
2

‖F‖L∞(ℓ2)

. sup
k∈I2

(
2kβ(0)‖Ak

n,ℓ‖L2→L2

)
δ
−µ

2
x ‖F‖L∞(ℓ2)

. 2−(|n|1+|ℓ|1)‖F‖L∞(ℓ2).

We now crudely estimate the terms IIz
n,ℓ,2F (x) and III

z
n,ℓF (x) when ℜ(z) = 0.

Let ψ̃ be a smooth function whose Fourier transform is identically 1 on |s| < 2.
Let

(2.10) ψ̃k
ℓ (x) := 2kψ̃(2kxd)

d−1∏

j=µ+1

[2
k

mj
+ℓj

η(2
k

mj
+ℓj

xj)]

then

Ak
n,ℓf(y) = ψ̃k

ℓ ∗dσ
k
n
∗(ψk ∗f)(y) =

∫ ∫
ψ̃k
ℓ (y−w−γ(s))(ψk ∗f)(w)ϕk

n
(s)dsdw.

For y ∈ Qx and w /∈ Un(x), i.e., ρ(x− ω + γ(s)) & δx, we have

ρ(y − w + γ(s)) ≥ ρ(x− ω + γ(s))− ρ(x− y) & δx

for all s ∈ supp(ϕk
n
) and

|Ak
n,ℓ[χRd\Un(x)fk](y)|

.

∫ ∫

ρ(y−w+γ(s))&δx

|ψ̃k
ℓ (y − w − γ(s))||ψk ∗ fk(w)||ϕ

k
n
(s)| dsdw



Lp-SOBOLEV REGULARITY FOR INTEGRAL OPERATORS 977

. sup
y,s

(∫

ρ(y−w+γ(s))&δx

|ψ̃k
ℓ (y − w − γ(s))| dw

)
‖ϕk

n
‖L1‖fk‖L∞

. (1 + 2kδx)
−N‖ϕk

n
‖L1‖fk‖L∞

. (1 + 2kδx)
−N2−β(0)+

∑d−1
j=µ+1 nj‖fk‖L∞ .

Therefore

IIz
n,ℓ,2F (x) . 2−N(|n|1+|ℓ|1)‖F‖ℓ∞(L∞) . 2−N(|n|1+|ℓ|1)‖F‖L∞(ℓ2).

Note that

|T k,z
n,ℓ fk(x)|

≤ 2
k
m

∫

Qx

∣∣Ak
n,ℓfk(y)− [Ak

n,ℓfk]Qx

∣∣ dy

|Qx|

≤ 2
k
m

∫

Qx

∫

Qx

∫ ∫ ∣∣∣ψ̃k
ℓ(y − w − γ(s))− ψ̃k

ℓ (z − w − γ(s))
∣∣∣

|ψk ∗ fk(w)||ϕ
k
n
(s)|dsdw

dz

|Qx|

dy

|Qx|

≤ 2
k
m sup

y,z∈Qx

( ∫ ∣∣∣ψ̃k
ℓ (y − w − γ(s))− ψ̃k

ℓ (z − w − γ(s))
∣∣∣ dw

)
‖ϕk

n‖L1‖fk‖L∞ .

(2.11)

Lemma 2.7.

sup
y,z∈Qx

(∫ ∣∣∣ψ̃k
ℓ (y − w − γ(s))− ψ̃k

ℓ (z − w − γ(s))
∣∣∣ dw

)
. 2ℓ

2
max
j=1

(2kδx)
aj .

Proof. The proof follows by (2.10) and Mean Value Theorem. We omit the
proof. �

By (2.11) and Lemma 2.7, we have

|IIIz
n,ℓF (x)| ≤

∑

k>0: 2kδx≤2−N(|n|1+|ℓ|1)

|T k,z
n,ℓ fk(x)|

.
∑

k>0: 2kδx≤2−N(|n|1+|ℓ|1)

2
k
m (2ℓ

2
max
j=1

(2kδx)
aj )(2−

k
m

+n)‖fk‖L∞

. 2−N(|n|1+|ℓ|1)‖fk‖ℓ∞(L∞) . 2−N(|n|1+|ℓ|1)‖F‖L∞(ℓ2).

3. Necessary conditions

Let 2 ≤ m1 ≤ · · · ≤ md−1. For k = 1, . . . , d− 1, let

Bk :=

(
(1 + α(mi))mi − 1

(1 + α(mi))mi
,

mi − 1

(1 + α(mi))mi

)
.

Let Σ(m1, . . . ,md−1) be the convex polygonal region with vertices (0, 0), (1, 1),
B1, . . ., Bd−1 and their dual points B′

1, . . . , B
′
d−1. Let

Eσ = {(1/p, 1/q) : ‖A‖Lp→Lq<∞,1≤p,q≤∞} .
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Then it is well-known that Eσ ⊂ Σ(m1, . . . ,md−1) (see [2]).

Corollary 3.1. A maps Lp into Lq if (1/p, 1/q) belongs to the interior of

Σ(m1, . . . ,md−1).

Proof. By Theorem 1.1, for each i = 1, . . . , d− 1, we have

‖PkAf‖mi
. 2−α(mi)k‖f‖mi

.

And the results follow by interpolating these estimates with the following the
trivial estimates

‖PkAf‖∞ . ‖ψk ∗ dσ‖∞‖f‖1 . 2k‖f‖1. �

The necessary conditions of Theorem 1.1 is clear from the proof of Corollary
3.1 since Eσ ⊂ Σ(m1, . . . ,md−1).
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