Browse > Article
http://dx.doi.org/10.4134/JKMS.j190637

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II  

Hu, Jin-Hua (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University)
Mao, Jing (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University)
Tu, Qiang (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University)
Wu, Di (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.5, 2020 , pp. 1299-1322 More about this Journal
Abstract
We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.
Keywords
Inverse curvature flows; star-shaped; principal curvatures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Brendle, P.-K. Hung, and M.-T. Wang, A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124-144. https://doi.org/10.1002/cpa.21556   DOI
2 L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III; Functions of the eigenvalue of the Hessian, Acta. Math. 155 (1985), 261-301.   DOI
3 H. Chen, Q. Li, The Lp-dual Minkowski problem and related parabolic flows, Preprint.
4 L. Chen and J. Mao, Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold, J. Geom. Anal. 28 (2018), no. 2, 921-949. https://doi.org/10.1007/s12220-017-9848-6   DOI
5 L. Chen, J. Mao, Q. Tu, and D. Wu, Asymptotic convergence for a class of inverse mean curvature flows in $R^{n+1}$, Proc. Amer. Math. Soc. 148 (2020), no. 1, 379-392. https://doi.org/10.1090/proc/14686   DOI
6 C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differential Geom. 32 (1990), no. 1, 299-314. http://projecteuclid.org/euclid.jdg/1214445048   DOI
7 K. Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhauser Boston, Inc., Boston, MA, 2004. https://doi.org/10.1007/978-0-8176-8210-1
8 Y. Ge, G. Wang, and J. Wu, Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom. 98 (2014), no. 2, 237-260. http://projecteuclid.org/euclid.jdg/1406552250
9 Y. Ge, G. Wang, J. Wu, and C. Xia, A Penrose inequality for graphs over Kottler space, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 755-782. https://doi.org/10.1007/s00526-014-0732-y   DOI
10 C. Gerhardt, Curvature problems, Series in Geometry and Topology, 39, International Press, Somerville, MA, 2006.
11 C. Gerhardt, Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 471-489. https://doi.org/10.1007/s00526-012-0589-x   DOI
12 G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353-437. http://projecteuclid.org/euclid.jdg/1090349447
13 G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Differential Geom. 80 (2008), no. 3, 433-451. http://projecteuclid.org/euclid.jdg/1226090483
14 G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
15 N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, translated from the Russian by P. L. Buzytsky [P. L. Buzytskii], Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987.
16 H. Li and Y. Wei, On inverse mean curvature flow in Schwarzschild space and Kottler space, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Art. 62, 21 pp. https://doi.org/10.1007/s00526-017-1160-6   DOI
17 H. Li, Y. Wei, and C. Xiong, A geometric inequality on hypersurface in hyperbolic space, Adv. Math. 253 (2014), 152-162. https://doi.org/10.1016/j.aim.2013.12.003   DOI
18 M. Makowski and J. Scheuer, Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere, Asian J. Math. 20 (2016), no. 5, 869-892. https://doi.org/10.4310/AJM.2016.v20.n5.a2   DOI
19 O. C. Schnurer, Surfaces expanding by the inverse Gau$\beta$ curvature flow, J. Reine Angew. Math. 600 (2006), 117-134.
20 J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), no. 3, 355-372. https://doi.org/10.1007/BF02571249   DOI
21 J. I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geom. 33 (1991), no. 1, 91-125. http://projecteuclid.org/euclid.jdg/1214446031