• Title/Summary/Keyword: Hyers-Ulam stability.

Search Result 349, Processing Time 0.036 seconds

On a general hyers-ulam stability of gamma functional equation

  • Jung, Soon-Mo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.437-446
    • /
    • 1997
  • In this paper, the Hyers-Ulam stability and the general Hyers-Ulam stability (more precisely, modified Hyers-Ulam-Rassias stability) of the gamma functional equation (3) in the following setings $$ \left$\mid$ f(x + 1) - xf(x) \right$\mid$ \leq \delta and \left$\mid$ \frac{xf(x)}{f(x + 1)} - 1 \right$\mid$ \leq \frac{x^{1+\varepsilon}{\delta} $$ shall be proved.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF A SYSTEM OF FIRST ORDER LINEAR RECURRENCES

  • Xu, Mingyong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.841-849
    • /
    • 2007
  • In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first order linear recurrences with variable coefficients in Banach spaces. The concept of the Hyers-Ulam-Rassias stability originated from Th. M. Rassias# stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. As an application, the Hyers-Ulam-Rassias stability of a p-order linear recurrence with variable coefficients is proved.

LAPLACE TRANSFORM AND HYERS-ULAM STABILITY OF DIFFERENTIAL EQUATION FOR LOGISTIC GROWTH IN A POPULATION MODEL

  • Ponmana Selvan Arumugam;Ganapathy Gandhi;Saravanan Murugesan;Veerasivaji Ramachandran
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1163-1173
    • /
    • 2023
  • In this paper, we prove the Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam stability of a differential equation of Logistic growth in a population by applying Laplace transforms method.

HYERS-ULAM-RASSIAS STABILITY OF A CUBIC FUNCTIONAL EQUATION

  • Najati, Abbas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.825-840
    • /
    • 2007
  • In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation 3f(x+3y)+f(3x-y)=15f(x+y)+15f(x-y)+80f(y). The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias# stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

REFINED HYERS-ULAM STABILITY FOR JENSEN TYPE MAPPINGS

  • Rassias, John Michael;Lee, Juri;Kim, Hark-Mahn
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.101-116
    • /
    • 2009
  • In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we improve results for Jensen type mappings and establish new theorems about the Ulam stability of additive and alternative Jensen type mappings.

  • PDF

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • KIM, GWANG-HUI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.321-338
    • /
    • 2005
  • In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.

LOCAL STABILITY OF CAUCHY FUNCTIONAL EQUATION

  • Park, Kyoo-Hong;Lee, Young-Whan;Ji, Kyoung-Sihn
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.581-590
    • /
    • 2001
  • In this paper we prove a local stability of Gavruta’s theorem for the generalized Hyers-Ulam-Rassias Stability of Cauchy functional equation.

ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS

  • Huang, Jinghao;Jung, Soon-Mo;Li, Yongjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.685-697
    • /
    • 2015
  • We investigate the stability of nonlinear differential equations of the form $y^{(n)}(x)=F(x,y(x),y^{\prime}(x),{\cdots},y^{(n-1)}(x))$ with a Lipschitz condition by using a fixed point method. Moreover, a Hyers-Ulam constant of this differential equation is obtained.