References
- Q. H. Alqifiary and S.-M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differential Equations 2014 (2014), No. 80, 11
- C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), no. 4, 373-380. https://doi.org/10.1155/S102558349800023X
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012 (2012), Art. ID 716936, 41 pp. https://doi.org/10.1155/2012/716936
- A. Buakird and S. Saejung, Ulam stability with respect to a directed graph for some fixed point equations, Carpathian J. Math. 35 (2019), no. 1, 23-30. https://doi.org/10.37193/CJM.2019.01.03
- S.-C. Chung and W.-G. Park, Hyers-Ulam stability of functional equations in 2-Banach spaces, Int. J. Math. Anal. (Ruse) 6 (2012), no. 17-20, 951-961.
- R. Fukutaka and M. Onitsuka, Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl. 473 (2019), no. 2, 1432-1446. https://doi.org/10.1016/j.jmaa.2019.01.030
- P. G˘avrut˘a, On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings, J. Math. Anal. Appl. 261 (2001), no. 2, 543-553. https://doi.org/10.1006/jmaa.2001.7539
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), no. 10, 1135-1140. https://doi.org/10.1016/j.aml.2003.11.004
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl. 311 (2005), no. 1, 139-146. https://doi.org/10.1016/j.jmaa.2005.02.025
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Appl. Math. Lett. 19 (2006), no. 9, 854-858. https://doi.org/10.1016/j.aml.2005.11.004
- S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), no. 2, 549-561. https://doi.org/10.1016/j.jmaa.2005.07.032
- S.-M. Jung, Approximate solutions of a linear differential equation of third order, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 1063-1073.
- S.-M. Jung, A. Ponmana Selvan, and R. Murali, Mahgoub transform and Hyers-Ulam stability of first-order linear differential equations, J. Math. Inequal. 15 (2021), no. 3, 1201-1218. https://doi.org/10.7153/jmi-2021-15-80
- V. Kalvandi, N. Eghbali, and J. M. Rassias, Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, J. Math. Extension 13 (2019), no. 1, 1-15.
- T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn. 55 (2002), no. 1, 17-24.
- A. Mohammed, B. Bouikhalene, and E. Elqorachi, Ulam-Gavruta-Rassias stability of a linear functional equation, Int. J. Appl. Math. Stat. 7 (2007), No. Fe07, 157-166.
- R. Murali and A. Ponmana Selvan, Fourier Transforms and Ulam Stabilities of Linear Differential Equations, Frontiers in Functional Equations and Analytic Inequalities, Springer Nature Switzerland AG (2019), 195-217.
- R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of a free and forced vibrations, Kragujevac J. Math. 44 (2020), no. 2, 299-312. https://doi.org/10.46793/KgJMat2002.299M
- R. Murali, A. Ponmana Selvan, S. Baskaran, C. Park, and J. R. Lee, Hyers-Ulam stability of first-order linear differential equations using Aboodh transform, J. Inequal. Appl. 2021 (2021), Paper No. 133, 18 pp. https://doi.org/10.1186/s13660-021-02670-3
- R. Murali, A. Ponmana Selvan, and C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math. 5 (2020), no. 2, 766-780. https://doi.org/10.3934/math.2020052
- R. Murali, A. Ponmana Selvan, C. Park, and J. R. Lee, Aboodh transform and the stability of second order linear differential equations, Adv. Difference Equ. 2021 (2021), Paper No. 296, 18 pp. https://doi.org/10.1186/s13662-021-03451-4
- B. Noori, M. B. Moghimi, A. Najati, C. Park, and J. R. Lee, On superstability of exponential functional equations, J. Inequal. Appl. 2021 (2021), Paper No. 76, 17 pp. https://doi.org/10.1186/s13660-021-02615-w
- M. Ob loza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. No. 13 (1993), 259-270.
- M. Ob loza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141-146.
- T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795
- T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572
- H. Rezaei, S.-M. Jung, and T. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), no. 1, 244-251. https://doi.org/10.1016/j.jmaa.2013.02.034
- S.-E. Takahasi, T. Miura, and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y' = λy, Bull. Korean Math. Soc. 39 (2002), no. 2, 309-315. https://doi.org/10.4134/BKMS.2002.39.2.309
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
- G. Wang, M. Zhou, and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21 (2008), no. 10, 1024-1028. https://doi.org/10.1016/j.aml.2007.10.020