DOI QR코드

DOI QR Code

LAPLACE TRANSFORM AND HYERS-ULAM STABILITY OF DIFFERENTIAL EQUATION FOR LOGISTIC GROWTH IN A POPULATION MODEL

  • Received : 2023.02.12
  • Accepted : 2023.07.07
  • Published : 2023.10.31

Abstract

In this paper, we prove the Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam stability of a differential equation of Logistic growth in a population by applying Laplace transforms method.

Keywords

References

  1. Q. H. Alqifiary and S.-M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differential Equations 2014 (2014), No. 80, 11
  2. C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998), no. 4, 373-380.  https://doi.org/10.1155/S102558349800023X
  3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064 
  4. N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012 (2012), Art. ID 716936, 41 pp. https://doi.org/10.1155/2012/716936 
  5. A. Buakird and S. Saejung, Ulam stability with respect to a directed graph for some fixed point equations, Carpathian J. Math. 35 (2019), no. 1, 23-30.  https://doi.org/10.37193/CJM.2019.01.03
  6. S.-C. Chung and W.-G. Park, Hyers-Ulam stability of functional equations in 2-Banach spaces, Int. J. Math. Anal. (Ruse) 6 (2012), no. 17-20, 951-961. 
  7. R. Fukutaka and M. Onitsuka, Best constant in Hyers-Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl. 473 (2019), no. 2, 1432-1446. https://doi.org/10.1016/j.jmaa.2019.01.030 
  8. P. G˘avrut˘a, On a problem of G. Isac and Th. M. Rassias concerning the stability of mappings, J. Math. Anal. Appl. 261 (2001), no. 2, 543-553. https://doi.org/10.1006/jmaa.2001.7539 
  9. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222 
  10. S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004), no. 10, 1135-1140. https://doi.org/10.1016/j.aml.2003.11.004 
  11. S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl. 311 (2005), no. 1, 139-146. https://doi.org/10.1016/j.jmaa.2005.02.025 
  12. S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Appl. Math. Lett. 19 (2006), no. 9, 854-858. https://doi.org/10.1016/j.aml.2005.11.004 
  13. S.-M. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), no. 2, 549-561. https://doi.org/10.1016/j.jmaa.2005.07.032 
  14. S.-M. Jung, Approximate solutions of a linear differential equation of third order, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 1063-1073. 
  15. S.-M. Jung, A. Ponmana Selvan, and R. Murali, Mahgoub transform and Hyers-Ulam stability of first-order linear differential equations, J. Math. Inequal. 15 (2021), no. 3, 1201-1218. https://doi.org/10.7153/jmi-2021-15-80 
  16. V. Kalvandi, N. Eghbali, and J. M. Rassias, Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, J. Math. Extension 13 (2019), no. 1, 1-15. 
  17. T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn. 55 (2002), no. 1, 17-24. 
  18. A. Mohammed, B. Bouikhalene, and E. Elqorachi, Ulam-Gavruta-Rassias stability of a linear functional equation, Int. J. Appl. Math. Stat. 7 (2007), No. Fe07, 157-166. 
  19. R. Murali and A. Ponmana Selvan, Fourier Transforms and Ulam Stabilities of Linear Differential Equations, Frontiers in Functional Equations and Analytic Inequalities, Springer Nature Switzerland AG (2019), 195-217. 
  20. R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of a free and forced vibrations, Kragujevac J. Math. 44 (2020), no. 2, 299-312.  https://doi.org/10.46793/KgJMat2002.299M
  21. R. Murali, A. Ponmana Selvan, S. Baskaran, C. Park, and J. R. Lee, Hyers-Ulam stability of first-order linear differential equations using Aboodh transform, J. Inequal. Appl. 2021 (2021), Paper No. 133, 18 pp. https://doi.org/10.1186/s13660-021-02670-3 
  22. R. Murali, A. Ponmana Selvan, and C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math. 5 (2020), no. 2, 766-780. https://doi.org/10.3934/math.2020052 
  23. R. Murali, A. Ponmana Selvan, C. Park, and J. R. Lee, Aboodh transform and the stability of second order linear differential equations, Adv. Difference Equ. 2021 (2021), Paper No. 296, 18 pp. https://doi.org/10.1186/s13662-021-03451-4 
  24. B. Noori, M. B. Moghimi, A. Najati, C. Park, and J. R. Lee, On superstability of exponential functional equations, J. Inequal. Appl. 2021 (2021), Paper No. 76, 17 pp. https://doi.org/10.1186/s13660-021-02615-w 
  25. M. Ob loza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat. No. 13 (1993), 259-270. 
  26. M. Ob loza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141-146. 
  27. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.2307/2042795 
  28. T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572 
  29. H. Rezaei, S.-M. Jung, and T. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), no. 1, 244-251. https://doi.org/10.1016/j.jmaa.2013.02.034 
  30. S.-E. Takahasi, T. Miura, and S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y' = λy, Bull. Korean Math. Soc. 39 (2002), no. 2, 309-315. https://doi.org/10.4134/BKMS.2002.39.2.309 
  31. S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964. 
  32. G. Wang, M. Zhou, and L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 21 (2008), no. 10, 1024-1028. https://doi.org/10.1016/j.aml.2007.10.020