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REFINED HYERS–ULAM STABILITY FOR JENSEN
TYPE MAPPINGS

John Michael Rassias*, Juri Lee**, and Hark-Mahn Kim***

Abstract. In 1940 S.M. Ulam proposed the famous Ulam stability
problem. In 1941 D.H. Hyers solved the well-known Ulam stability
problem for additive mappings subject to the Hyers condition on
approximately additive mappings. In this paper we improve results
for Jensen type mappings and establish new theorems about the
Ulam stability of additive and alternative Jensen type mappings.

1. Introduction

In 1940 and in 1964 S.M. Ulam [17] proposed the famous Ulam sta-
bility problem: “When is it true that by changing a little the hypotheses
of a theorem one can still assert that the thesis of the theorem remains
true or approximately true?” For very general functional equations, the
concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how
do the solutions of the inequality differ from those of the given functional
equation? If the answer is affirmative, we would say that the equation
is stable.

In 1941 D.H. Hyers [7] solved this stability problem for additive map-
pings subject to the Hyers condition on approximately additive map-
pings. In 1951 D.G. Bourgin [2] was the second author to treat the
Ulam stability problem for additive mappings. In 1978 P.M. Gruber [6]
remarked that Ulam’s problem is of particular interest in probability the-
ory and in the case of functional equations of different types. We wish to
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note that stability properties of different functional equations can have
applications to unrelated fields. For instance, Zhou [18] used a stability
property of the functional equation f(x−y)+f(x+y) = 2f(x) to prove
a conjecture of Z. Ditzian about the relationship between the smooth-
ness of a mapping and the degree of its approximation by the associated
Bernstein polynomials. Th.M. Rassias [15] and then P. Gǎvruta [5] ob-
tained generalized results of Hyers’ Theorem which allow the Cauchy
difference to be unbounded. In 1987 Z. Gajda and R. Ger [4] showed
that one can get analogous stability results for subadditive multifunc-
tions. The stability problems of several functional equations have been
extensively investigated by a number of authors and there are many in-
teresting results concerning this problem [1, 3, 8, 9, 16]. In 2003-2006
J.M. Rassias and M.J. Rassias [12, 13] and J.M. Rassias [14] solved the
above Ulam problem for Jensen and Jensen type mappings.

In this paper we improve our upper bounds and thus generalize Ulam
stability results controlled by more general mappings, by considering
approximately Jensen and Jensen type mappings satisfying conditions
much weaker than the D.H. Hyers and J.M. Rassias conditions on ap-
proximately Jensen and Jensen type mappings. Besides we establish
new theorems about the Ulam stability results for alternative Jensen
and Jensen type equations. These stability results can be applied in
stochastic analysis, financial and actuarial mathematics, as well as in
psychology and sociology.

Throughout this paper, let X be a real normed space and Y a real
Banach space in the case of functional inequalities, as well as let X and
Y be real linear spaces for functional equations. Besides let us denote
by N the set of all natural numbers and R the set of all real numbers.

Definition 1.1. A mapping A : X → Y is called additive of the first
form if A satisfies the functional equation

A(x1 + x2) + A(x1 − x2) = 2A(x1)(1.1)

for all x1, x2 ∈ X and A(0) = 0.

We note that the equation (1.1) is equivalent to the Jensen equation

2A(
x + y

2
) = A(x) + A(y)(1.2)

for x = x1 + x2, y = x1 − x2.

Definition 1.2. A mapping A : X → Y is called additive of the
second form if A satisfies the functional equation

A(x1 + x2)−A(x1 − x2) = 2A(x2)(1.3)
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for all x1, x2 ∈ X.

We note that the equation (1.3) is equivalent to the Jensen type equa-
tion

2A(
x− y

2
) = A(x)−A(y)(1.4)

for x = x1 + x2, y = x1 − x2. A mapping A : X → Y is called Jensen
type mapping if it satisfies the functional equation (1.4).

2. Stability of Jensen type mappings

We will investigate under what conditions it is then possible to find a
true additive mapping of the second form near an approximate additive
mapping with small error.

Theorem 2.1. Assume that there exists a mapping ϕ : X2 → [0,∞)
for which a mapping f : X → Y satisfies the inequality

‖f(x1 + x2)− f(x1 − x2)− 2f(x2)‖ ≤ ϕ(x1, x2)(2.1)

and the series
∞∑

i=0

ϕ(2ix1, 2ix2)
2i

< ∞(2.2)

( ∞∑

i=1

2iϕ(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique additive mapping A :
X → Y of the second form which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤ 1
2

∞∑

i=0

ϕ(2ix, 2ix)
2i

(
‖f(x)−A(x)‖ ≤ 1

2

∞∑

i=1

2iϕ(2−ix, 2−ix), respectively

)

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. Substitution of xi = 0(i = 1, 2) in the functional inequality
(2.1) yields that 2‖f(0)‖ ≤ ϕ(0, 0). Note that ϕ(0, 0) = 0 = f(0) in the
next case of (2.2) by the convergence of the series

∑∞
i=1 2iϕ(0, 0) < ∞.
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Now substituting x1, x2 := x in the functional inequality (2.1), we
obtain

‖f(2x)− f(0)− 2f(x)‖ ≤ ϕ(x, x),∥∥∥∥g(x)− g(2x)
2

∥∥∥∥ ≤
1
2
ϕ(x, x),(2.3)

for all x ∈ X, where g(x) := f(x) + f(0). Therefore from (2.3) with 2ix
in place of x (i = 1, · · · , n− 1), one gets

∥∥∥∥g(x)− g(2nx)
2n

∥∥∥∥ ≤
1
2

n−1∑

i=0

ϕ(2ix, 2ix)
2i

(2.4)

for all x ∈ X and all n ∈ N. By (2.4), for any n > m ≥ 0 we have
∥∥∥∥
g(2mx)

2m
− g(2nx)

2n

∥∥∥∥ ≤ 1
2m

∥∥∥∥g(2mx)− g(2n−m2mx)
2n−m

∥∥∥∥

≤ 1
2

n−m−1∑

i=0

ϕ(2i+mx, 2i+mx)
2i+m

,

which tends to zero as m tends to infinity. Thus it follows that a sequence{
g(2nx)

2n

}
is Cauchy in Y and it thus converges. Therefore we see that a

mapping A : X → Y defined by

A(x) := lim
n→∞

g(2nx)
2n

= lim
n→∞

f(2nx)
2n

exists for all x ∈ X. It is obvious that A(0) = 0 by the definition of A.
In addition it is clear from (2.1) that the following inequality

‖A(x1 + x2)−A(x1 − x2)− 2A(x2)‖
= lim

n→∞ 2−n‖f(2n(x1 + x2))− f(2n(x1 − x2))− 2f(2nx2)‖
≤ lim

n→∞ 2−nϕ(2nx1, 2nx2) = 0

holds for all x1, x2 ∈ X. Thus taking the limit n → ∞ in (2.4), we find
that the mapping A is an additive mapping of the second form satisfying
the inequality (2.3) near the approximate mapping f : X → Y of the
equation (1.1).

To prove the afore-mentioned uniqueness, we assume now that there is
another additive mapping Ǎ : X → Y of the second form which satisfies
the equation (1.1) and the inequality (2.3). Then it follows easily that

A(x) = 2−nA(2nx), Ǎ(x) = 2−nǍ(2nx)
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hold for all x ∈ X and all n ∈ N. Thus from the last equality and (2.3)
one proves that

‖A(x)− Ǎ(x)‖ =
1
2n
‖A(2nx)− Ǎ(2nx)‖

≤ 1
2n

(‖A(2nx)− f(2nx)− f(0)‖+
∥∥f(2nx) + f(0)− Ǎ(2nx)

∥∥)

≤
∞∑

i=0

ϕ(2i+nx, 2i+nx)
2i+n

for all x ∈ X and all n ∈ N. Therefore from n →∞, one establishes

A(x)− Ǎ(x) = 0

for all x ∈ X, completing the proof of uniqueness.
The proof of the last assertion in the theorem is obvious according to

the result of [11, 15]. ¤
We obtain [14, Theorem 3.1] as a corollary for approximately additive

mappings of the second form in terms of a product of powers of norms.
Now we improve the bound 33δ

2 in [12, Theorem 4] obtained in 2003 for
the Ulam stability of additive mappings of the second form on restricted
domains.

Theorem 2.2. Assume that there exist d > 0 and δ ≥ 0 for which a
mapping f : X → Y satisfies the inequality

‖f(x1 + x2)− f(x1 − x2)− 2f(x2)‖ ≤ δ(2.5)

for all x1, x2 ∈ X with ‖x1‖ + ‖x2‖ ≥ d. Then there exists a unique
additive mapping A : X → Y of the second form which satisfies the
inequality

‖f(x) + f(0)−A(x)‖ ≤ 7δ

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. Substitution of x1 := 0 and x2 := x with ‖x‖ ≥ d in the
functional inequality (2.5) yields

‖f(x) + f(−x)‖ ≤ δ

for all x ∈ X with ‖x‖ ≥ d. Replacing (x1, x2) by (x, 0) in (2.5), one
has 2‖f(0)‖ ≤ δ. Now employing the same argument as [12, Theorem
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4], we get

f(x1 + x2)− f(x1 − x2)− 2f(x2)
= [f(x1 + x2)− f(x1 − x2 − 2t)− 2f(x2 + t)]

+[f(x1 + x2 − 2t)− f(x1 − x2)− 2f(x2 − t)]
−[f(x1 + x2 − 2t)− f(x1 − x2 − 2t)− 2f(x2)]
+2[f(t + x2)− f(t− x2)− 2f(x2)]
+2[f(t− x2) + f(−(t− x2))],

for all x1, x2 ∈ X with ‖x1‖+ ‖x2‖ < d, where t ∈ X with ‖t‖ = d. And
thus one has

‖f(x1 + x2)− f(x1 − x2)− 2f(x2)‖ ≤ 7δ(2.6)

for all x1, x2 ∈ X. Applying Theorem 2.1 to the functional inequality
(2.6), we obtain the desired results. ¤

3. Stability of alternative additive mappings

Definition 3.1. A mapping A : X → Y is called alternative additive
of the first form if A satisfies the functional equation

A(x1 + x2) + A(x1 − x2) + 2A(−x1) = 0(3.1)

for all x1, x2 ∈ X.

We note that the equation (3.1) is equivalent to the alternative Jensen
equation

2A(−x + y

2
) + A(x) + A(y) = 0(3.2)

for x = x1 +x2, y = x1−x2. A mapping A : X → Y is called alternative
Jensen mapping if it satisfies the functional equation (3.2).

Definition 3.2. A mapping A : X → Y is called alternative additive
of the second form if A satisfies the functional equation

A(x1 + x2)−A(x1 − x2) + 2A(−x2) = 0(3.3)

for all x1, x2 ∈ X.

We note that the equation (3.3) is equivalent to the alternative Jensen
type equation

2A(−x− y

2
) + A(x)−A(y) = 0(3.4)
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for x = x1 +x2, y = x1−x2. A mapping A : X → Y is called alternative
Jensen type mapping if it satisfies the functional equation (3.4).

Alternative additive mappings and alternative Jensen mappings to-
gether with alternative Jensen type mappings were introduced and in-
vestigated through J.M Rassias’ publications [12, 13, 14]. We will inves-
tigate under what conditions it is then possible to find a true alternative
additive mapping of the first form near an approximate alternative ad-
ditive mapping with small error.

Theorem 3.3. Assume that there exists a mapping ϕ : X2 → [0,∞)
for which a mapping f : X → Y satisfies the inequality

‖f(x1 + x2) + f(x1 − x2) + 2f(−x1)‖ ≤ ϕ(x1, x2)(3.5)

and the series
∞∑

i=0

ϕ(2ix1, 2ix2)
2i

< ∞(3.6)

( ∞∑

i=1

2iϕ(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique alternative additive map-
ping A : X → Y of the first form which satisfies the inequality

‖f(x)− f(0)−A(x)‖ ≤ 1
2

∞∑

i=0

1
2i

[
ϕ(2ix, 2ix) + ϕ(2ix, 0)

]
(3.7)

(
‖f(x)−A(x)‖ ≤ 1

2

∞∑

i=1

2i
[
ϕ(2−ix, 2−ix) + ϕ(2−ix, 0)

])

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. Replacing (x1, x2) by (x, 0) and (0, 0) separately, one has an
approximate odd condition 2‖f(x) + f(−x)‖ ≤ ϕ(x, 0) and 4‖f(0)‖ ≤
ϕ(0, 0). Thus we remark that ϕ(0, 0) = 0 = f(0) by the convergence
in the next case of (3.6). Substituting x1, x2 := x in the functional
inequality (3.5), we obtain ‖f(2x) + f(0) + 2f(−x)‖ ≤ ϕ(x, x), and so

‖f(2x) + f(0)− 2f(x)‖ ≤ ϕ(x, x) + ϕ(x, 0),∥∥∥∥g(x)− g(2x)
2

∥∥∥∥ ≤
1
2

[
ϕ(x, x) + ϕ(x, 0)

]
,(3.8)
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for all x ∈ X, where g(x) := f(x)− f(0). Therefore from (3.8) with 2ix
in place of x (i = 1, · · · , n− 1), one gets

∥∥∥∥g(x)− g(2nx)
2n

∥∥∥∥ ≤
1
2

n−1∑

i=0

1
2i

[
ϕ(2ix, 2ix) + ϕ(2ix, 0)

]
(3.9)

(
∥∥f(x)− 2nf(2−nx)

∥∥ ≤ 1
2

n∑

i=1

2i
[
ϕ(2−ix, 2−ix) + ϕ(2−ix, 0)

])

for all x ∈ X and all n ∈ N.
From the inequality (3.9), we can prove the rest of the proof by the

similar way to the proofs of our corresponding Theorem 2.1. ¤
By virtue of Theorem 3.3, we obtain [13, Theorem 2.1] as a corollary

for approximately alternative additive mappings of the first form.

Theorem 3.4. Assume that there exists a mapping ϕ : X2 → [0,∞)
for which a mapping f : X → Y satisfies the inequality

‖f(x1 + x2)− f(x1 − x2) + 2f(−x2)‖ ≤ ϕ(x1, x2)(3.10)

and the series
∞∑

i=0

ϕ(2ix1, 2ix2)
2i

< ∞(3.11)

( ∞∑

i=1

2iϕ(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique alternative additive map-
ping A : X → Y of the second form which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤ 1
2

∞∑

i=0

1
2i

[
ϕ(2ix, 2ix) + 2ϕ(0, 2ix)

]

(
‖f(x)−A(x)‖ ≤ 1

2

∞∑

i=1

2i
[
ϕ(2−ix, 2−ix) + 2ϕ(0, 2−ix)

])

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. Replacing (x1, x2) by (0, x) and (x, 0) separately, one has an
approximate odd condition ‖f(x) + f(−x)‖ ≤ ϕ(0, x) and 2‖f(0)‖ ≤
ϕ(x, 0) for all x ∈ X. Thus we see that ϕ(0, 0) = 0 = f(0) by the con-
vergence in the next case of (3.11). Substituting x1, x2 := x in the func-
tional inequality (3.10), we obtain ‖f(2x) − f(0) + 2f(−x)‖ ≤ ϕ(x, x),
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and so

‖f(2x)− f(0)− 2f(x)‖
≤ ‖f(2x)− f(0) + 2f(−x)‖+ ‖ − 2f(x)− 2f(−x)‖
≤ ϕ(x, x) + 2ϕ(0, x),∥∥∥∥g(x)− g(2x)

2

∥∥∥∥ ≤
1
2

[
ϕ(x, x) + 2ϕ(0, x)

]
,

for all x ∈ X, where g(x) := f(x) + f(0).
The rest of the proof goes through by the similar way to the proof of

our corresponding Theorem 3.3. ¤

4. Stability of alternative Jensen type mappings

In this section, we will investigate the stability of alternative Jensen
type functional equations.

Theorem 4.1. Assume that there exists a mapping ε : X2 → [0,∞)
for which a mapping f : X → Y satisfies the approximately Jensen type
inequality

∥∥∥∥2f(
x1 − x2

2
)− f(x1) + f(x2)

∥∥∥∥ ≤ ε(x1, x2)(4.1)

and the series
∞∑

i=1

ε(2ix1, 2ix2)
2i

< ∞(4.2)

( ∞∑

i=0

2iε(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique Jensen type mapping
A : X → Y which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤
∞∑

i=1

ε(2ix, 0)
2i

(
‖f(x)−A(x)‖ ≤

∞∑

i=0

2iε(2−ix, 0), respectively

)

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.
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Proof. Replacing (x1, x2) by (x, x), one has a condition 2‖f(0)‖ ≤
infx∈X ε(x, x). Thus we remark that ε(0, 0) = 0 = f(0) by the conver-
gence in the next case of (4.2). Substituting x1 := 2x and x2 := 0 in the
functional inequality (4.1), we obtain ‖2f(x)−f(2x)+f(0)‖ ≤ ε(2x, 0),
and so ∥∥∥∥g(x)− g(2x)

2

∥∥∥∥ ≤
1
2
ε(2x, 0),(4.3)

for all x ∈ X, where g(x) := f(x) + f(0).
The rest of the proof goes through by the similar way to the proofs

of our corresponding Theorem 2.1. ¤

Theorem 4.2. Assume that there exists a mapping ε : X2 → [0,∞)
for which a mapping f : X → Y satisfies the approximately alternative
Jensen inequality

∥∥∥∥2f(−x1 + x2

2
) + f(x1) + f(x2)

∥∥∥∥ ≤ ε(x1, x2)(4.4)

and the series
∞∑

i=0

ε(2ix1, 2ix2)
2i

< ∞(4.5)

( ∞∑

i=1

2iε(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique alternative Jensen map-
ping A : X → Y which satisfies the inequality

‖f(x)− f(0)−A(x)‖ ≤ 1
2

∞∑

i=0

Θ(2ix)
2i

(4.6)

(
‖f(x)−A(x)‖ ≤ 1

2

∞∑

i=1

2iΘ(2−ix), respectively

)

for all x ∈ X, where Θ(x) := ε(x, x) + min{ε(2x, 0), ε(0, 2x)}, x ∈ X.
If, moreover, f is measurable or f(tx) is continuous in t for each fixed
x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. Replacing (x1, x2) by (x, x) and (0, 0) separately, one has an
approximate odd condition 2‖f(x) + f(−x)‖ ≤ ε(x, x) and 4‖f(0)‖ ≤
ε(0, 0) for all x ∈ X. Thus we see that ε(0, 0) = 0 = f(0) by the con-
vergence in the next case of (4.5). Substituting (x1, x2) by (2x, 0) and
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(0, 2x) separately in the functional inequality (3.10), we obtain

‖2f(−x) + f(2x) + f(0)‖ ≤ min{ε(2x, 0), ε(0, 2x)},
and so

‖f(2x) + f(0)− 2f(x)‖ ≤ Θ(x) = ε(x, x) + min{ε(2x, 0), ε(0, 2x)},∥∥∥∥g(x)− g(2x)
2

∥∥∥∥ ≤
1
2
Θ(x),

for all x ∈ X, where g(x) := f(x)− f(0).
From the inequality, we can prove the rest of the proof by the similar

way to the proofs of our corresponding Theorem 2.1. ¤
By virtue of Theorem 4.2, we obtain [13, Theorem 5.1] as a corollary

for approximately alternative Jensen mappings.

Theorem 4.3. Assume that there exists a mapping ε : X2 → [0,∞)
for which a mapping f : X → Y satisfies the approximately alternative
Jensen type inequality

∥∥∥∥2f(−x1 − x2

2
) + f(x1)− f(x2)

∥∥∥∥ ≤ ε(x1, x2)(4.7)

and the series

∞∑

i=1

ε(2ix1, 2ix2)
2i

< ∞(4.8)

( ∞∑

i=0

2iε(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ X. Then there exists a unique alternative Jensen type
mapping A : X → Y which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤
∞∑

i=1

ε(0, 2ix)
2i

(4.9)

(
‖f(x)−A(x)‖ ≤

∞∑

i=0

2iε(0, 2−ix), respectively

)

for all x ∈ X. If, moreover, f is measurable or f(tx) is continuous in t
for each fixed x ∈ X then A(tx) = tA(x) for all x ∈ X and t ∈ R.

Proof. The proof is similar to that of Theorem 4.1. ¤
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5. Stability of Jensen type mappings in Banach modules

In the last part of this paper, let B be a unital Banach algebra with
norm | · |, and let BM1 and BM2 be left Banach B-modules with norms
|| · || and ‖ · ‖, respectively.

As an application, we are going to prove the generalized Hyers-Ulam
stability problem of Jensen type equations in Banach modules over a
unital Banach algebra.

Theorem 5.1. Assume that there exists a mapping ϕ : BM2
1 → [0,∞)

for which a mapping f : BM1 → BM2 satisfies the inequality

‖f(ux1 + ux2)− f(ux1 − ux2)− 2uf(x2)‖ ≤ ϕ(x1, x2)(5.1)

and the series
∞∑

i=0

ϕ(2ix1, 2ix2)
2i

< ∞(5.2)

( ∞∑

i=1

2iϕ(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ BM1 and all u ∈ B(1) := {u ∈ B | |u| = 1}. If, moreover,
f is measurable or f(tx) is continuous in t for each fixed x ∈ BM1, then
there exists a unique B-linear mapping A : BM1 → BM2 of the second
form which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤ 1
2

∞∑

i=0

ϕ(2ix, 2ix)
2i

(5.3)

(
‖f(x)−A(x)‖ ≤ 1

2

∞∑

i=1

2iϕ(2−ix, 2−ix), respectively

)

for all x ∈ BM1.

Proof. By Theorem 2.1, it follows from (5.1) with u = 1 that there
exists a unique additive mapping A : BM1 → BM2 of the second form
such that the inequality (5.3) holds true for all x ∈ BM1. The mapping
A is given by

A(x) = lim
n→∞

f(2nx)
2n

for all x ∈ BM1.
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Under the assumption that f is measurable or the mapping f(tx) is
continuous in t ∈ R for each fixed x ∈ BM1, the mapping A satisfies

A(tx) = tA(x)

for all x ∈ BM1 and all t ∈ R. Replacing x1, x2 by 2nx1, 2nx2 in (5.1),
respectively, and dividing it by 2n, we figure out
‖f(2n(ux1 + ux2))− f(2n(ux1 − ux2))− 2uf(2nx2)‖

2n
≤ ϕ(2nx1, 2nxn)

2n

for all u ∈ B(1) and all x1, x2 ∈ BM1. Taking the limit n → ∞, one
obtains by condition (5.2) that

A(ux1 + ux2)−A(ux1 − ux2)− 2uA(x2) = 0(5.4)

for all x1, x2 ∈ BM1 and all u ∈ B(1). Substituting x1 = 0, x2 = x in
the last equality (5.4), we obtain by oddness of A

A(ux)− uA(x) = 0,

for all x ∈ BM1 and all u ∈ B(1). The last equality is also true for u = 0
vacuously. Now for each element b ∈ B(b 6= 0) we figure out

A(bx) = A

(
|b| · b

|b|x
)

= |b| ·A
(

b

|b|x
)

= |b| · b

|b| ·A(x) = bA(x)

for all b ∈ B(b 6= 0) and all x ∈ BM1. Thus the mapping A satisfies

A(bx) = bA(x)

for all b ∈ B and all x ∈ BM1, as desired. This completes the proof of
the theorem. ¤

Theorem 5.2. Assume that there exists a mapping ϕ : BM2
1 → [0,∞)

for which a mapping f : BM1 → BM2 satisfies the inequality

‖f(ux1 + ux2) + f(ux1 − ux2) + 2uf(−x1)‖ ≤ ϕ(x1, x2)(5.5)

and the series (3.6) converges for all x1, x2 ∈ BM1 and all u ∈ B(1).
If, moreover, f is measurable or f(tx) is continuous in t for each fixed
x ∈ BM1, then there exists a unique alternative B-linear mapping A :
BM1 → BM2 of the first form which satisfies the inequality (3.7) for all
x ∈ BM1.

In the last part of this paper, let B be a unital C∗-algebra with norm
|·| and unitary group U(B) = {u ∈ B : uu∗ = u∗u = 1}, and let BM1 and
BM2 be left Banach B-modules with norms || · || and ‖ · ‖, respectively.
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Theorem 5.3. Assume that there exists a mapping ε : BM2
1 → [0,∞)

for which a mapping f : BM1 → BM2 satisfies the approximately Jensen
type inequality

∥∥∥∥2f(
ux1 − ux2

2
)− uf(x1) + uf(x2)

∥∥∥∥ ≤ ε(x1, x2)(5.6)

and the series

∞∑

i=1

ε(2ix1, 2ix2)
2i

< ∞(5.7)

( ∞∑

i=0

2iε(2−ix1, 2−ix2) < ∞, respectively

)

for all x1, x2 ∈ BM1 and all u ∈ U(B). Then there exists a unique Jensen
type B-linear mapping A : BM1 → BM2 which satisfies the inequality

‖f(x) + f(0)−A(x)‖ ≤
∞∑

i=1

ε(2ix, 0)
2i

(5.8)

(
‖f(x)−A(x)‖ ≤

∞∑

i=0

2iε(2−ix, 0), respectively

)

for all x ∈ BM1.

Proof. By Theorem 4.1, it follows from (5.6) with u = 1 ∈ U(B) that
there exists a unique Jensen type mapping A : BM1 → BM2 such that
the inequality (5.8) holds true for all x ∈ BM1.

By the condition (5.7), we get
∥∥∥∥2A(

ux1 − ux2

2
)− uA(x1) + uA(x2)

∥∥∥∥

= lim
n→∞ 2−n

∥∥∥∥2f(
u(2n(x1 − x2)

2
)− uf(2nx1) + uf(2nx2)

∥∥∥∥
≤ lim

n→∞ ≤ 2−nε(2nx1, 2nx2) = 0

for all x1, x2 ∈ BM1 and all u ∈ U(B), which yields A(ux) = uA(x) for
all x ∈ BM1 and all u ∈ U(B).

Now let a be a nonzero element in B and K a positive integer greater
than 4|a|. Then we have | a

K | < 1
4 < 1 − 2

3 . By [10, Theorem 1], there
exist three elements u1, u2, u3 ∈ U(B) such that 3 a

K = u1 + u2 + u3.
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Thus we calculate that

A(ax) = A

(
K

3
3

a

K
x

)
=

(
K

3

)
A(u1x + u2x + u3x)

=
(

K

3

)
(A(u1x) + A(u2x) + A(u3x))

=
(

K

3

)
(u1 + u2 + u3)A(x) =

(
K

3

)
3

a

K
A(x) = aA(x)

for all a ∈ B (a 6= 0) and all x ∈ BM1. It is clear that A(0·x) = 0 = 0A(x)
for all x ∈ BM1. So the mapping A is B-linear, as desired. ¤

Theorem 5.4. Assume that there exists a mapping ε : BM2
1 → [0,∞)

for which a mapping f : BM1 → BM2 satisfies the approximately alter-
native Jensen inequality∥∥∥∥2f(−ux1 + ux2

2
) + uf(x1) + uf(x2)

∥∥∥∥ ≤ ε(x1, x2)

and the series (4.5) converges for all x1, x2 ∈ BM1 and all u ∈ U(B).
Then there exists a unique alternative Jensen B-linear mapping A :
BM1 → BM2 which satisfies the inequality (4.6) for all x ∈ BM1.
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Birkhäuser, Basel-Boston, MA, 1987.
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