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Abstract. In this paper, we investigate existence, uniqueness and four different types of

Ulam’s stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-

Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class
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Krasnosel’skĭi’s fixed point theorem. Finally, two examples are also given to point out the

applicability of our main results.
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1. Introduction

The fractional calculus has origin during the same time as that of the ordi-
nary calculus. It has been concerned with derivatives and integrals of arbitrary
order that can be non integer of functions. In recent years, several researchers
have exposed attention in the field of qualitative theory of fractional differential
equations, which will be used to describe phenomena of real world problems.
For more details, see the monographs [4, 18, 19, 27, 29, 31, 34, 39, 47] and the
references therein.

Several interesting and important area concerning of research for fractional
differential equations are devoted to the existence theory and stability analysis
of the solutions. In recent years, there are many researchers have discussed
the existence, uniqueness and different types of Ulam–Hyers (UH) stability
of solutions of initial and boundary value problems for fractional differen-
tial equations. The UH stability is the essential and special type of stability
analysis that researchers studied in the field of mathematical analysis. The
concept of Ulam stability of functional equations was firstly initiated by Ulam
[42, 43] and Hyers [23] presented the partial answer to the question of Ulam
in the case of Banach space. Thereafter, this type of stability is called the UH
stability. In 1950, the Hyers stability was generalized by Aoki [10]. Rassias
[36, 37] provided an interesting generalization of the UH stability of linear
and nonlinear mappings. The UH stability was initially applied to linear dif-
ferential equation by Obloza [33]. We refer the reader to see monographs
[1, 3, 5, 11, 12, 14, 17, 26, 30, 32, 45, 46]. It is to be noted that, the above
said areas of interest (existence and stability) have been fabulously deliberated
within Riemann–Liouville, Caputo, Hilfer or Hadamard derivatives.

Recently, Jarad et al. [24] introduced a new type of fractional derivative
operator so called generalized proportional fractional (GPF) derivatives ex-
tended by local derivatives [9]. The characteristic of the new derivative is
that it involves two fractional order, preserves the semigroup property, pos-
sesses nonlocal character and upon limiting cases it converges to the original
function and its derivative. The GPF derivative is well behaved and has a
various helpful over the classical derivatives in the sense that it generalizes
previously defined derivatives in the literature. We list some recent papers
which have been refined in frame of GPF derivative and other related works
[2, 7, 8, 25, 35, 40, 41].

Nonlocal boundary value problems have become a rapidly growing area of
research. The study of this type of problems is driven not only by a theoretical
interest, but also by the fact that several phenomena in engineering, physics
and life sciences can be modelled in this way. The idea of nonlocal conditions
dates back to the work of Hilb [22]. However, the systematic investigation of
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a certain class of spatial nonlocal problems was carried out by Bitsadze and
Samarskii [15]. We refer the reader to [13, 16] and the references cited therein
for a motivation regarding nonlocal conditions.

In [12], the authors considered a fractional differential equations with mixed
nonlocal fractional derivatives, integrals and multi-point conditions of the form

cDαx(t) = f(t, x(t)), t ∈ (0, T ],

m∑
i=1

γix(ηi) +
n∑
j=1

λj
cDβjx(ξi) +

k∑
r=1

σrIδrx(φr) = A,
(1.1)

where x ∈ C1([0, T ],R) is a continuous function, cDα, cDβj denote the Caputo
fractional derivatives of order α and βj , respectively, 0 < βj ≤ α ≤ 1 for j =

1, 2, . . . , n, Iδr is the Riemann–Liouville fractional integral operator of order
δr > 0 for r = 1, 2, . . . , k, γi, λj , σr, A ∈ R, ηi, ξj , φr ∈ [0, T ], i = 1, 2, . . . ,m
and f ∈ C([0, T ]× R,R).

The existence and uniqueness results were obtained by applying Schaefer’s
fixed point theorem and Banach’s contraction mapping principle. In addi-
tion, the authors established different kinds of Ulam stability for the purposed
problem.

In [44], the authors studied the existence, uniqueness and Ulam–Hyers–
Rassias stability for a class of ψ-Hilfer fractional differential equations de-
scribed by{

HDα,ρ;ψ
a+

x(t) = f(t, x(t),HDα,ρ;ψ
a+

x(t)), t ∈ J = (a, T ],

I1−γ;ψ
a+

x(a) = xa, α ≤ γ = α+ ρ− αρ, T > a,
(1.2)

where HDα,ρ;ψ
a+

is the ψ-Hilfer fractional derivative of order α ∈ (0, 1] and type

ρ ∈ [0, 1], I1−γ;ψ
a+

is the Riemann–Liouville fractional integral of order 1 − γ
with respect to the function ψ, f ∈ C(J × R2,R) and xa ∈ R.

Harikrishman et al. [21] discussed existence, uniqueness of nonlocal initial
value problems for Pantograph equations with ψ-Hilfer fractional derivative of
the form

HDα,ρ;ψ
a+

x(t) = f(t, x(t), x(λt)), t ∈ J = (a, b], 0 < λ < 1,

I1−γ;ψ
a+

x(a) =

k∑
i=1

cix(τi), τi ∈ (a, b], α ≤ γ = α+ ρ− αρ,
(1.3)

where HDα,ρ;ψ
a+

is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type

ρ ∈ [0, 1], I1−γ;ψ
a+

is the Riemann–Liouville fractional integral of order 1−γ with

respect to the continuous function ψ such that ψ′ > 0 and f ∈ C(J × R2,R).
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In [6], the authors established existence, uniqueness and Ulam–Hyers stabil-
ity of implicit Pantograph fractional differential equations involving ψ-Hilfer
fractional derivatives of the form

HDα,ρ;ψ
0+

x(t) = f(t, x(t), x(λt),HDα,ρ;ψ
0+

x(λt)), t ∈ J, 0 < λ < 1,

I1−γ;ψ
0+

x(0+) =

m∑
i=1

bi Iβ;ψ
0+

x(ξi), ξi ∈ J, α ≤ γ = α+ ρ− αρ,
(1.4)

where HDα,ρ;ψ
0+

is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type

ρ ∈ [0, 1], I1−γ;ψ
0+

and Iβ;ψ
0+

are the ψ-Riemann–Liouville fractional integral of
order 1− γ and β > 0, respectively, with respect to the continuous function ψ
such that ψ′ 6= 0 and f ∈ C(J × R3,R), J = [0, T ], bi ∈ R and 0 < ξ1 ≤ ξ2 ≤
· · · ≤ ξm < T , T > 0.

Motivated by the papers [6, 12, 21, 44] and some familiar results on frac-
tional Pantograph differential equations, we discuss the existence results and
different types of Ulam stability such as Ulam–Hyers, generalized Ulam–Hyers,
Ulam–Hyers–Rassias and generalized Ulam–Hyers–Rassias stability for the
generalized proportional fractional Pantograph differential equations with mixed
nonlocal conditions of the form:

C
aD

α,ρx(t) = f(t, x(t), x(λt), CaD
α,ρx(λt)), t ∈ [a, T ], 0 < λ < 1,

m∑
i=1

γix(ηi) +
n∑
j=1

κj
C
aD

βj ,ρx(ξj) +
k∑
r=1

σraI
δr,ρx(θr) = A,

(1.5)

where C
aD

q,ρ is the Caputo GPF derivative of order q = {α, βj} with 0 < βj <

α ≤ 1, for j = 1, 2, . . . , n, 0 < ρ ≤ 1, the notation aI
δr,ρ is the Riemann-

Liouville GPF integral of order δr > 0 for r = 1, 2, . . . , k, ρ > 0, the given
constants γi, κj , σr ∈ R, the points ηi, ξj , θr ∈ [a, T ], i = 1, 2, . . . ,m, and
f : [a, T ]× R3 → R is a given continuous function, T > a ≥ 0.

The paper is organized as follows: In Section 2, we recall some basic and
essential definitions and lemmas. In Section 3 the existence and uniqueness
results for the problem (1.5) are obtained, via Banach contraction principle,

Leray-Schauder nonlinear alternative and Krasnosel’skĭi’s fixed point theo-
rems. In Section 4, we discuss the Ulam-Hyers, generalized Ulam-Hyers, Ulam-
Hyers-Rassias and generalized Ulam-Hyers-Rassias stability results. Finally,
some examples are given in Section 5 to illustrate the benefit of our main
results.



A proportional Caputo fractional Pantograph differential equation 201

2. Preliminaries

In this section, we recall some definitions and properties of generalized
proportional fractional derivatives and fractional integrals that will be used
throughout the remaining part of this paper. For more details, see; [20, 24, 38].

Definition 2.1. ([24]) The generalized proportional fractional (GPF) integral
of a function f of order α > 0 with ρ ∈ (0, 1] is defined as

(aI
α,ρf)(t) =

1

ραΓ(α)

∫ t

a
e
ρ−1
ρ

(t−s)
(t− s)α−1f(s)ds, (2.1)

where Γ(·) is represent the Gamma function [29].

Definition 2.2. ([24]) The Caputo type generalized proportional fractional
derivative of a function f of order α with ρ ∈ (0, 1] is defined as

(CaD
α,ρf)(t) =

1

ρn−αΓ(n− α)

∫ t

a
e
ρ−1
ρ

(t−s)
(t− s)n−α−1Dn,ρf(s)ds, (2.2)

where n = [α] + 1, [α] represents the integer part of the real number α and
Dn,ρf(t) = (Dρf(t))n with Dρf(t) = (1− ρ)f(t)− ρf ′(t).

Lemma 2.3. ([24]) For ρ ∈ (0, 1] and n = [α] + 1, we have

(a
CDα,ρ

aI
α,ρf(s))(t) = f(t)

and

(aI
α,ρ C

aD
α,ρf)(t) = f(t)− e

ρ−1
ρ

(t−a)
n−1∑
k=0

Dk,ρf(a)

ρkk!
(t− a)k. (2.3)

Proposition 2.4. ([24]) Let α ≥ 0, β > 0. Then, for any ρ ∈ (0, 1] and
n = [α] + 1, we have

(i)
(
aI
α,ρe

ρ−1
ρ
t
(t− a)β−1

)
(x) = Γ(β)

Γ(β+α)ρα e
ρ−1
ρ
x
(x− a)β+α−1, α > 0.

(ii)
(
C
aD

α,ρe
ρ−1
ρ
t
(t− a)β−1

)
(x) = ραΓ(β)

Γ(β−α)e
ρ−1
ρ
x
(x− a)β−α−1, β > n.

(iii)
(
C
aD

α,ρe
ρ−1
ρ
t
(t− a)k

)
(x) = 0, k = 0, 1, . . . , n− 1.

Let E = C([a, T ],R) be the Banach space of all continuous functions from
[a, T ] into R equipped with the norm ‖x‖E = supt∈[a,T ]{|x(t)|}.

In order to transform the purpose problem into a fixed point problem, (1.5)
must be converted to an equivalent Volterra integral equation. We provide the
following lemma which is an important in our main results.
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Lemma 2.5. Let h : [a, T ] → R be a continuous function, 0 < βj < α ≤ 1,
j = 1, . . . , n and ρ, δr, > 0, r = 1, 2, . . . , k. Then, the function x ∈ E is
a solution to the following linear generalized proportional fractional equation
equipped with mixed nonlocal conditions of the form:

C
aD

α,ρx(t) = h(t), t ∈ [a, T ],

m∑
i=1

γix(ηi) +
n∑
j=1

κj
C
aD

βj ,ρx(ξj) +
k∑
r=1

σraI
δr,ρx(θr) = A,

(2.4)

if and only if x satisfies the following integral equation

x(t) = aI
α,ρh(t) +

e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρh(ηi)−

n∑
j=1

κjaI
α−βj ,ρh(ξj)

−
k∑
r=1

σraI
α+δr,ρh(θr)

)
, (2.5)

where

Ω :=
m∑
i=1

γie
ρ−1
ρ

(ηi−a)
+

k∑
r=1

σr(θr − a)δre
ρ−1
ρ

(θr−a)

ρδrΓ(1 + δr)
6= 0. (2.6)

Proof. Let x be a solution of the problem (2.4). By using Lemma 2.3, the
integral equation can be written as

x(t) = aI
α,ρh(t) + c1e

ρ−1
ρ

(t−a)
, (2.7)

where arbitrary constants c1 ∈ R.
Taking the operators C

aD
βj ,ρ and aI

δr,ρ into (2.7) with Proposition 2.4 (i),
we obtain

C
aD

βj ,ρx(t) = aI
α−βj ,ρh(t),

aI
δr,ρx(t) = aI

δr,ρh(t) + c1
(t− a)δre

ρ−1
ρ

(t−a)

ρδrΓ(1 + δr)
.

Applying the given boundary condition in (2.4), we have

A =
m∑
i=1

γiaI
α,ρh(ηi) +

n∑
j=1

κjaI
α−βj ,ρh(ξj) +

k∑
r=1

σraI
α+δr,ρh(θr)

+c1

(
m∑
i=1

γie
ρ−1
ρ

(ηi−a)
+

k∑
r=1

σr(θr − a)δre
ρ−1
ρ

(θr−a)

ρδrΓ(1 + δr)

)
.
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Solving the above equation, it follows that

c1 =
1

Ω

A− m∑
i=1

γiaI
α,ρh(ηi)−

n∑
j=1

κjaI
α−βj ,ρh(ξj)−

k∑
r=1

σraI
α+δr,ρh(θr)

 ,

where Ω is defined by (2.6). Inserting these value of c1 in (2.7), we get (2.5).
Conversely, it is easily to shown by direct computation that the solution

x(t) is given by (2.5) satisfies the problem (2.4) under the given conditions.
This completes the proof. �

Fixed point theorems play a major role in establishing the existence theory
for the problem (1.5). We collect here some well-known fixed point theorems
used in this paper.

Lemma 2.6. ([20], Banach contraction principle) Let D be a non-empty
closed subset of a Banach space E. Then any contraction mapping T from D
into itself has a unique fixed point.

Lemma 2.7. ([20], Nonlinear alternative for single-valued maps) Let
E be a Banach space, C be a closed, convex subset of M , X be an open subset
of C, and 0 ∈ X. Suppose that F : X → C is a continuous, compact (that is,
F (X) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in X, or
(ii) there is x ∈ ∂X (the boundary of X in C) and % ∈ (0, 1) with x =

%F (x).

Lemma 2.8. ([28], Krasnoselskii’s fixed point theorem) Let M be a
closed, bounded, convex, and nonempty subset of a Banach space.Let A,B be
the operators such that

(i) Ax+By ∈M whenever x, y ∈M;
(ii) A is compact and continuous;

(iii) B is contraction mapping.

Then there exists z ∈M such that z = Az + bz.

3. Existence results

For simplicity, we set

Fx(t) = f(t, x(t), x(λt), Fx(λt)).

Throughout this paper, the expression aI
α,ρFx(s)(c) means that

aI
q,ρFx(s)(c) :=

1

ρqΓ(q)

∫ c

a
e
ρ−1
ρ

(c−s)
(c− s)q−1Fx(s)ds,
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where q = {α, α − βj , α + δr} and c = {t, ηi, ξj , θr}, i = 1, 2, . . . ,m, j =
1, 2, . . . , n, r = 1, 2, . . . , k.

In view of Lemma 2.5, an operator Q : E→ E is defined by

(Qx)(t) = aI
α,ρFx(s)(t) +

e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFx(s)(ηi)

−
n∑
j=1

κjaI
α−βj ,ρFx(s)(ξj)−

k∑
r=1

σraI
α+δr,ρFx(s)(θr)

)
, (3.1)

where the operators Q1, Q2 : E→ E are defined by

(Q1x)(t) = aI
α,ρFx(s)(t), (3.2)

(Q2x)(t) =
e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFx(s)(ηi)−

n∑
j=1

κjaI
α−βj ,ρFx(s)(ξj)

−
k∑
r=1

σraI
α+δr,ρFx(s)(θr)

)
, (3.3)

which implies Qx = Q1x +Q2x. It should be noticed that the problem (1.5)
has solutions if and only if the operator Q has fixed points. In the following
subsection, we establish the existence results of solutions for the problem (1.5),
which is studied by applying Banach contraction principle, Leray-Schauder
nonlinear alternative and Krasnosel’skĭi’s fixed point theorem.

The first existence and uniqueness result of a solution for the problem (1.5)
will be proved by using Banach contraction principle (Banach’s fixed point
theorem).

Theorem 3.1. Assume that f : [a, T ]×R3 → R is a continuous function such
that

(H1) there exist constants L1 > 0 and 0 < 2L1Λ1 + L2 < 1 such that

|f(t, u1, v1, w1)− f(t, u2, v2, w2)| ≤ L1 (|u1 − u2|+ |v1 − v2|) + L2|w1 − w2|

for any ui, vi, wi ∈ R, i = 1, 2 and t ∈ [a, T ].
If

2L1Λ1

1− L2
< 1, (3.4)
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then the problem (1.5) has a unique solution (x ∈ E) on [a, T ], where

Λ1 =
(T − a)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)
+

n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)

+

k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)
. (3.5)

Proof. Firstly, we transform the problem (1.5) into a fixed point problem,
x = Qx, where the operator Q is defined as in (3.1). It is clear that the fixed
points of the operator Q are solutions of the problem (1.5). Applying the
Banach contraction principle, we shall show that the operator Q has a fixed
point which is the unique solution of the problem (1.5).

Let supt∈[a,T ] |f(t, 0, 0, 0)| := M1 <∞. Next, we set

BR1 := {x ∈ E : ‖x‖E ≤ R1}

with

R1 ≥
M1Λ1|Ω|+ |A|(1− L2)

|Ω|[1− (2L1Λ1 + L2)]
, 2L1Λ1 + L2 < 1, (3.6)

where Ω and Λ1 are given by (2.6) and (3.5), respectively. Observe that BR1 is
bounded, closed, and convex subset of E. The proof is divided into two steps:

Step I. To show that QBR1 ⊂ BR1 .
For any x ∈ BR1 , we have

|(Qx)(t)| ≤ aI
α,ρ|Fx(s)|(t) +

e
ρ−1
ρ

(t−a)

|Ω|

(
|A|+

m∑
i=1

|γi|aIα,ρ|Fx(s)|(ηi)

+

n∑
j=1

|κj |aIα−βj ,ρ|Fx(s)|(ξj) +

k∑
r=1

|σr|aIα+δr,ρ|Fx(s)|(θr)

)
.

It follows from condition (H1) that

|Fx(t)| ≤ |f(t, x(t), x(λt), Fx(λt))− f(t, 0, 0, 0)|+ |f(t, 0, 0, 0)|
≤ 2L1|x(t)|+ L2|Fx(t)|+M1

≤ 2L1|x(t)|+M1

1− L2
.
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This implies that

|(Qx)(t)| ≤ aI
α,ρ

(
2L1|x(s)|+M1

1− L2

)
(t)

+
e
ρ−1
ρ

(t−a)

|Ω|

[
|A|+

m∑
i=1

|γi|aIα,ρ
(

2L1|x(s)|+M1

1− L2

)
(ηi)

+
n∑
j=1

|κj |aIα−βj ,ρ
(

2L1|x(s)|+M1

1− L2

)
(ξj)

+
k∑
r=1

|σr|aIα+δr,ρ

(
2L1|x(s)|+M1

1− L2

)
(θr)

]
.

By using 0 < e
ρ−1
ρ

(u−s) ≤ 1 for any a ≤ s < u ≤ T , we obtain

|(Qx)(t)| ≤
(

2L1R1 +M1

1− L2

)(
(T − a)α

ραΓ(α+ 1)

+
1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)
+

n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)

+
k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

))
+
|A|
|Ω|

=

(
2L1R1 +M1

1− L2

)
Λ1 +

|A|
|Ω|
≤ R1,

which implies that ‖Qx‖E ≤ R1. Therefore, QBR1 ⊂ BR1 .

Step II. To show that the operator Q : E→ E is contraction.
For any x, y ∈ E and for each t ∈ [a, T ], we have

|(Qx)(t)− (Qy)(t)| ≤ aI
α,ρ|Fx(s)− Fy(s)|(T )

+
e
ρ−1
ρ

(T−a)

|Ω|

(
m∑
i=1

|γi|aIα,ρ|Fx(s)− Fy(s)|(ηi)

+
n∑
j=1

|κj |aIα−βj ,ρ|Fx(s)− Fy(s)|(ξj)

+
k∑
r=1

|σr|aIα+δr,ρ|Fx(s)− Fy(s)|(θr)

)
(3.7)
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and

|Fx(t)− Fy(t)| ≤ |f(t, x(t), x(λt), Fx(λt))− f(t, x(t), x(λt), Fy(λt))|
≤ L1(|x(t)− y(t)|+ |x(λt)− y(λt)|) + L2|Fx(λt)− Fy(λt)|
≤ 2L1|x(t)− y(t)|+ L2|Fx(t)− Fy(t)|

≤ 2L1

1− L2
|x(t)− y(t)|. (3.8)

Then, by substituting (3.8) in (3.7), we get

|(Qx)(t)− (Qy)(t)|

≤ aI
α,ρ

(
2L1

1− L2
|x(s)− y(s)|

)
(T )

+
e
ρ−1
ρ

(T−a)

|Ω|

[
m∑
i=1

|γi|aIα,ρ
(

2L1

1− L2
|x(s)− y(s)|

)
(ηi)

+

n∑
j=1

|κj |aIα−βj ,ρ
(

2L1

1− L2
|x(s)− y(s)|

)
(ξj)

+

k∑
r=1

|σr|aIα+δr,ρ

(
2L1

1− L2
|x(s)− y(s)|

)
(θr)

]

≤ 2L1

1− L2

[
(T − a)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)

+

n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)
+

k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)]
‖x− y‖E

=
2L1Λ1

1− L2
‖x− y‖E,

which implies that ‖Qx−Qy‖E ≤ (2L1Λ1)/(1−L2)‖x−y‖E. As (2L1Λ1)/(1−
L2) < 1, hence, the operatorQ is a contraction map. Therefore, by the Banach
contraction principle (Lemma 2.6), the problem (1.5) has a unique solution in
E. The proof is completed. �

The second existence result is based on the Leray-Schauder nonlinear alter-
native.

Theorem 3.2. Assume that

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → [0,∞),
p ∈ C([a, T ],R+) and q ∈ C([a, T ],R+ ∪ {0}) such that

|f(t, x(t), x(λt), CaD
α,ρx(λt))| ≤ p(t)ψ(|x(t)|) + q(t)

∣∣C
aD

α,ρx(λt)
∣∣ ,
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for all (t, x) ∈ [a, T ] × R, where p0 = supt∈[a,T ]{p(t)} and q0 =

supt∈[a,T ]{q(t)} with q0 < 1.

(H3) there exists a positive constant N1 such that

N2

|A|
|Ω| + p0

(
2−q0
1−q0

)
ψ(N2)Λ1

> 1,

where Λ1 is defined by (3.5).

Then the problem (1.5) has at least one solution on [a, T ].

Proof. Let the operator Q defined by (3.1). Firstly, we shall show that Q
maps bounded sets (balls) into bounded sets in E. For a constant R2 > 0, let
BR2 := {x ∈ E : ‖x‖E ≤ R2} be a bounded ball in E, we have, for t ∈ [a, T ],

|(Qx)(t)| ≤ aI
α,ρ|Fx(s)|(T ) +

e
ρ−1
ρ

(T−a)

|Ω|

(
|A|+

m∑
i=1

|γi|aIα,ρ|Fx(s)|(ηi)

+
n∑
j=1

|κj |aIα−βj ,ρ|Fx(s)|(ξj) +
k∑
r=1

|σr|aIα+δr,ρ|Fx(s)|(θr)

)
.

It follows from (H2) that∣∣C
aD

α,ρx(t)
∣∣ ≤ p(t)ψ(|x(t)|) + q(t)

∣∣C
aD

α,ρx(λt)
∣∣

≤ p(t)ψ(|x(t)|) + q(t)
∣∣C
aD

α,ρx(t)
∣∣ .

This implies that ∣∣C
aD

α,ρx(t)
∣∣ ≤ p(t)ψ(|x(t)|)

1− q(t)
.

By using 0 < e
ρ−1
ρ

(u−s) ≤ 1 for any a ≤ s < u ≤ T , we get

|(Qx)(t)| ≤ |A|
|Ω|

+ p0

(
2− q0

1− q0

)
ψ(‖x‖E)

[
1

ραΓ(α)

∫ T

a
(T − s)α−1ds

+
1

|Ω|

(
m∑
i=1

|γi|
ραΓ(α)

∫ ηi

a
(ηi − s)α−1ds

+

n∑
j=1

|κj |
ρα−βjΓ(α− βj)

∫ ξj

a
(ξj − s)α−βj−1ds

+
k∑
r=1

|σr|
ρα+δrΓ(α+ δr)

∫ θr

a
(θr − s)α+δr−1ds

)]

=
|A|
|Ω|

+ p0

(
2− q0

1− q0

)
ψ(‖x‖E)Λ1,
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which leads to

‖Qx‖E ≤
|A|
|Ω|

+ +p0

(
2− q0

1− q0

)
ψ(R2)Λ1 := K1.

Next, we shall show that the operator Q maps bounded sets into equicon-
tinuous sets of E. Let points t1, t2 ∈ [a, T ] with t1 < t2 and x ∈ BR2 . Then
we have

|(Qx)(t2)− (Qx)(t1)|
≤ |aIα,ρFx(s)(t2)− aI

α,ρFx(s)(t1)|

+

∣∣∣e ρ−1
ρ

(t2−a) − e
ρ−1
ρ

(t1−a)
∣∣∣

|Ω|

(
|A|+

m∑
i=1

|γi|aIα,ρ|Fx(s)|(ηi)

+

n∑
j=1

|κj |aIα−βj ,ρ|Fx(s)|(ξj) +

k∑
r=1

|σr|aIα+δr,ρ|Fx(s)|(θr)

)

≤ p0

(
2− q0

1− q0

)
ψ(‖x‖E)

(
1

ραΓ(α)

∫ t1

a

∣∣∣∣∣e ρ−1
ρ

(t2−s)(t2 − s)α−1

− e
ρ−1
ρ

(t1−s)(t1 − s)α−1

∣∣∣∣∣ds+
(t2 − t1)α

ραΓ(α+ 1)

)

+
p0

(
2−q0
1−q0

)
ψ(‖x‖E)

|Ω|

∣∣∣e ρ−1
ρ

(t2−a) − e
ρ−1
ρ

(t1−a)
∣∣∣ [|A|+ m∑

i=1

|γi|(ηi − a)α

ραΓ(α+ 1)

+
n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)
+

k∑
r=1

|σr|(θr − a)α+δr

ρα−δrΓ(α+ δr + 1)

]
.

Clearly, which independent of x ∈ BR2 the inequality,

|(Qx)(t2)− (Qx)(t1)| → 0

as t2 → t1. Therefore it follows from the Arzelá-Ascoli theorem the operator
Q : E→ E is completely continuous.

Finally, we shall show that there exists an open set X ⊆ E with x 6= %Q(x)
for % ∈ (0, 1) and x ∈ ∂X .

Let x ∈ E be a solution of x = %Qx for % ∈ [0, 1]. Then, for t ∈ [a, T ], we
obtain
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|x(t)| = |%(Qx)(t)|

≤ |A|
|Ω|

+ p0

(
2− q0

1− q0

)
ψ(‖x‖E)

[
(T − s)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)

+
n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)
+

k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)]

=
|A|
|Ω|

+ p0

(
2− q0

1− q0

)
ψ(‖x‖E)Λ1,

which on taking the norm for t ∈ [a, T ], implies that

‖x‖E ≤
|A|
|Ω|

+ p0

(
2− q0

1− q0

)
ψ(‖x‖E)Λ1.

Consequently, we get

‖x‖E
|A|
|Ω| + p0

(
2−q0
1−q0

)
ψ(‖x‖E)Λ1

≤ 1.

In view of (H3), there exists N2 such that ‖x‖E 6= N2. Let us set

X = {x ∈ E : ‖x‖E < N2} and Y = X ∩BR2 .

Note that the operator Q : Y → E is continuous and completely continuous.
From the choice of Y, there is no x ∈ ∂Y such that x = %Qx for some % ∈ (0, 1).
Hence, by the nonlinear alternative of Leray-Schauder type (Lemma 2.7), we
deduce that Q has fixed point x ∈ Y which implies that the problem (1.5) has
at least one solution on [a, T ]. This completes the proof. �

By using Krasnoselskii’s fixed point theorem, the final existence theorem
will be obtained.

Theorem 3.3. Let f : [a, T ] × R3 → R be a continuous function satisfying
(H1). In addition we assume that

(H4) |f(t, u, v, w)| ≤ g(t), ∀(t, u, v, w) ∈ [a, T ]× R3 and g ∈ C([a, T ],R+).

Then the problem (1.5) has at least one solution on [a, T ] provided

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)
+

n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)

+

k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)
< 1. (3.9)
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Proof. Setting supt∈[a,T ] |g(t)| = ‖g‖E and cloosing

R3 ≥
|A|
|Ω|

+ ‖g‖EΛ1. (3.10)

We consider BR3 := {x ∈ E : ‖x‖E ≤ R3} and the operators Q1 and Q2 on
BR3 are defined by (3.2) and (3.3), respectively, for t ∈ [a, T ]. Note that
Q = Q1 +Q2.

For any x, y ∈ BR3 , we obtain

‖Q1x+Q2y‖E

≤ sup
t∈[a,t]

{
aI
α,ρ|Fx(s)|(t) +

e
ρ−1
ρ

(t−a)

|Ω|

(
|A|+

m∑
i=1

|γi|aIα,ρ|Fx(s)|(ηi)

+

n∑
j=1

|κj |aIα−βj ,ρ|Fx(s)|(ξj) +

k∑
r=1

|σr|aIα+δr,ρ|Fx(s)|(θr)

)}

≤ |A|
|Ω|

+ ‖g‖E

{
(T − a)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)

+
n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)
+

k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)}

=
|A|
|Ω|

+ ‖g‖EΛ1 ≤ R3.

This implies that Q1x+Q2x ∈ BR3 which satisfies assumption (i) of Lemma
2.8. It is easy to see, using (3.9), that the operatorQ2 is a contraction mapping
and also assumption (iii) of Lemma 2.8 holds.

To show that assumption (ii) of Lemma 2.8 is satisfied. Let {xn} be a
sequence such that xn → x in E where n → ∞. Then for each t ∈ [a, T ], we
get

|(Q1xn)(t)− (Q1x)(t)| ≤ aI
α,ρ|Fxn(s)− Fx(s)|(t)

≤ (T − a)α

ραΓ(α+ 1)
‖Fxn − Fx‖E.

Since f is continuous, it implies that Fx is also continuous. Therefore, we
obtain ‖Q1xn − Q1x‖E → 0, as n → ∞. Thus, this shows that the operator
Q1x is continuous. Also, the set Q1BR3 is uniformly bounded as

‖Q1x‖E ≤
(T − a)α

ραΓ(α+ 1)
‖g‖E.

Next, we prove the compactness of the operator Q1.
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Setting sup(t,u,v,w)∈[a,t]×R3 |f(t, u, v, w)| = f∗ < ∞, then for each t1, t2 ∈
[a, T ] with t1 ≤ t2, we have

|(Q1x)(t2)− (Q1x)(t1)|
= |aIα,ρFx(s)(t2)− aI

α,ρFx(s)(t1)|

≤ 1

ραΓ(α)

∫ t1

a

∣∣∣e ρ−1
ρ

(t2−s)(t2 − s)α−1 − e
ρ−1
ρ

(t1−s)(t1 − s)α−1
∣∣∣ |Fx(s)|ds

+
1

ραΓ(α)

∫ t2

t1

(t2 − s)α−1|Fx(s)|ds

≤ f∗

ραΓ(α+ 1)

(∫ t1

a

∣∣∣∣∣e ρ−1
ρ

(t2−s)(t2 − s)α−1

− e
ρ−1
ρ

(t1−s)(t1 − s)α−1

∣∣∣∣∣|Fx(s)|ds+ |t2 − t1|α
)
,

which is independent of x and |(Q1x)(t2)− (Q1x)(t1)| → 0 as t2 → t1. There-
fore, the set Q1BR3

is equicontinuous, the operator Q1 maps bounded subsets
into reltively compact subsets, it follows that the set Q1BR3

is relatively com-
pact. Then, by the Arzelá-Ascoli theorem, the operator Q1 is compact on
BR3

. Thus all the assumptions of Lemma 2.8 are satisfied. So, the conclusion

of Lemma 2.8 implies that the problem (1.5) has at least one solution on [a, T ].
The proof is completed. �

4. Ulam-Hyers stability results

In this section, we are analyzing the different kind of Ulam stability such as
Ulam-Hyers stable, generalized Ulam-Hyers stable, Ulam-Hyers-Rassias stable
and generalized Ulam-Hyers-Rassias stable of the boundary value problem
(1.5).

Here we mention that in this paper the definitions of stability have been
adopted from [38].

Definition 4.1. ([38]) The problem (1.5) is said to be Ulam-Hyers stable if
there exists a constant Φ ∈ R+ \ {0} such that for each % > 0 and solution
z ∈ E1 = C1([a, T ],R) of the inequality∣∣C

aD
α,ρz(t)− f(t, z(t), z(λt), (CaD

α,ρz)(λt))
∣∣ ≤ %, t ∈ [a, T ], (4.1)

there exists a solution x ∈ E1 of the problem (1.5) such that

|z(t)− x(t)| ≤ Φ%, t ∈ [a, T ]. (4.2)
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Definition 4.2. ([38]) The problem (1.5) is said to be generalized Ulam-Hyers
stable if there exists a function Φf ∈ C(R+,R+) with Φf (0) = 0 such that for
each solution z ∈ E1 of inequality (4.1) there exists a solution x ∈ E1 of the
problem (1.5) such that

|z(t)− x(t)| ≤ Φf (%), t ∈ [a, T ]. (4.3)

Definition 4.3. ([38]) The problem (1.5) is said to be Ulam-Hyers-Rassias
stable with respect to Φf ∈ C([a, T ],R+) if there exists a real number Cf,Φ > 0
such that for each solution z ∈ E1 of the inequality∣∣C

aD
α,ρz(t)− f(t, z(t), z(λt), (CaD

α,ρz)(λt))
∣∣ ≤ %Φf (t), t ∈ [a, T ], (4.4)

there exists a solution x ∈ E1 of the problem (1.5) such that

|z(t)− x(t)| ≤ Cf,Φ%Φf (t), t ∈ [a, T ]. (4.5)

Definition 4.4. ([38]) The problem (1.5) is said to be generalized Ulam-
Hyers-Rassias stable with respect to Φf ∈ C([a, T ],R+) if there exists a real
number Cf,Φ > 0 such that for each solution z ∈ E1 of the inequality∣∣C

aD
α,ρz(t)− f(t, z(t), z(λt), (CaD

α,ρz)(λt))
∣∣ ≤ Φf (t), t ∈ [a, T ], (4.6)

there exists a solution x ∈ E1 of the problem (1.5) such that

|z(t)− x(t)| ≤ Cf,ΦΦf (t), t ∈ [a, T ]. (4.7)

Remark 4.5. It is clear that

(i) Definition 4.1 ⇒ Definition 4.2;
(ii) Definition 4.3 ⇒ Definition 4.4;
(iii) Definition 4.3 for Φf (·) = 1 ⇒ Definition 4.1.

Remark 4.6. A function z ∈ E1 is a solution of the inequality (4.1) if and
only if there exists a function Ψ ∈ C([a, T ],R) (dependent on z) such that

(i) |Ψ(t)| ≤ %, ∀t ∈ [a, T ].
(ii) C

aD
α,ρz(t) = f(t, z(t), z(λt), (CaD

α,ρz)(λt)) + Ψ(t), t ∈ [a, T ].

By Remark 4.6, the solution of the problem

C
aD

α,ρz(t) = f(t, z(t), z(λt), (CaD
α,ρz)(λt) + Ψ(t), t ∈ [a, T ],
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can be written by

z(t) = aI
α,ρFz(s)(t) +

e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFz(s)(ηi)

−
n∑
j=1

κjaI
α−βj ,ρFz(s)(ξj)−

k∑
r=1

σraI
α+δr,ρFz(s)(θr)

)

+aI
α,ρΨ(s)(t)− e

ρ−1
ρ

(t−a)

Ω

(
m∑
i=1

γiaI
α,ρΨ(s)(ηi)

+
n∑
j=1

κjaI
α−βj ,ρΨ(s)(ξj) +

k∑
r=1

σraI
α+δr,ρΨ(s)(θr)

)
. (4.8)

Firstly, we present an important lemma that will be used in the proofs of
Ulam–Hyers stability and generalized Ulam–Hyers stability.

Lemma 4.7. If z ∈ E1 satisfies the inequality (4.1), then the function z is a
solution of the following inequality

|z(t)− (Qz)(t)| ≤ Λ1%, 0 < % ≤ 1, (4.9)

where Λ1 is given by (3.5).

Proof. From Remark 4.6 with (4.8), we obtain

|z(t)− (Qz)(t)|

=

∣∣∣∣∣aIα,ρΨ(s)(t)− e
ρ−1
ρ

(t−a)

Ω

(
m∑
i=1

γiaI
α,ρΨ(s)(ηi) +

n∑
j=1

κjaI
α−βj ,ρΨ(s)(ξj)

+

k∑
r=1

σraI
α+δr,ρΨ(s)(θr)

)∣∣∣∣∣
≤ aI

α,ρ|Ψ(s)|(T ) +
1

|Ω|

(
m∑
i=1

|γi|aIα,ρ|Ψ(s)|(ηi) +

n∑
j=1

|κj |aIα−βj ,ρ|Ψ(s)|(ξj)

+

k∑
r=1

|σr|aIα+δr,ρ|Ψ(s)|(θr)

)
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≤ %

[
(T − a)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)
+

n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)

+
k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)]
= Λ1%,

where Λ1 is given by (3.5), from which inequality (4.9) is obtained. �

Now, we present the Ulam-Hyers stability and generalized Ulam-Hyers sta-
bility results.

Theorem 4.8. Assume that f : [a, T ]× R3 → R is a continuous function. If
(H1) is satisfied with

2L1Λ1

1− L2
< 1.

Then the problem (1.5) is Ulam-Hyers stable as well as generalized Ulam-Hyers
stable on [a, T ].

Proof. Let z ∈ E1 be a solution of the inequality (4.1) and let x be the unique
solution of the problem (1.5),

C
aD

α,ρx(t) = f(t, x(t), x(λt), CaD
α,ρx(λt)), t ∈ (a, T ], 0 < λ < 1,

m∑
i=1

γix(ηi) +

n∑
j=1

κj
C
aD

βj ,ρx(ξj) +

k∑
r=1

σraI
δr,ρx(θr) = A.

By applying the triangle inequality, |u − v| ≤ |u| + |v|, and Lemma 4.7, we
have

|z(t)− x(t)| =

∣∣∣∣∣z(t)− aI
α,ρFx(s)(t)− e

ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFx(s)(ηi)

−
n∑
j=1

κjaI
α−βj ,ρFx(s)(ξj)−

k∑
r=1

σraI
α+δr,ρFx(s)(θr)

)∣∣∣∣∣
= |z(t)− (Qz)(t) + (Qz)(t)− (Qx)(t)|
≤ |z(t)− (Qz)(t)|+ |(Qz)(t)− (Qx)(t)|

≤ Λ1%+
2L1Λ1

1− L2
|z(t)− x(t)|,

where Λ1 is defined by (3.5). This yields that

|z(t)− x(t)| ≤ Λ1%

1− 2L1Λ1
1−L2

.
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By setting

Φ =
Λ1

1− 2L1Λ1
1−L2

, (4.10)

we end up with

|z(t)− x(t)| ≤ Φ%.

Hence, the problem (1.5) is Ulam-Hyers stable. Moreover, if we set Φf (%) = Φ%
such that Φf (0) = 0, then the problem (1.5) is generalized Ulam-Hyers stable.
This completes the proof. �

Remark 4.9. A function z ∈ E1 is a solution of the inequality (4.4) if and
only if there exists a function Θ ∈ C([a, T ],R) (dependent on z) such that

(i) |Θ(t)| ≤ %ΨΘ(t), ∀t ∈ [a, T ].
(ii) C

aD
α,ρz(t) = f(t, z(t), z(λt), CaD

α,ρz(λt)) + Θ(t), t ∈ [a, T ].

By Remark 4.9, the solution of the problem

C
aD

α,ρz(t) = f(t, z(t), z(λt), CaD
α,ρz(λt)) + Θ(t), t ∈ [a, T ],

can be written by

z(t) = aI
α,ρFz(s)(t) +

e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFz(s)(ηi)

−
n∑
j=1

κjaI
α−βj ,ρFz(s)(ξj)−

k∑
r=1

σraI
α+δr,ρFz(s)(θr)

)

+aI
α,ρΘ(s)(t)− e

ρ−1
ρ

(t−a)

Ω

(
m∑
i=1

γiaI
α,ρΘ(s)(ηi)

+

n∑
j=1

κjaI
α−βj ,ρΨ(s)(ξj) +

k∑
r=1

σraI
α+δr,ρΘ(s)(θr)

)
. (4.11)

Lemma 4.10. Let z ∈ E1 be a solution of inequality (4.4). Then the function
z satisfies the inequality

|z(t)− (Qz)(t)| ≤ Λ1ΨΘ(t)%, 0 < % ≤ 1, (4.12)

where Λ1 is given by (3.5).
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Proof. From Remark 4.9, we obtain the inequality

o |z(t)− (Qz)(t)| =

∣∣∣∣∣aIα,ρΘ(s)(t)− e
ρ−1
ρ

(t−a)

Ω

(
m∑
i=1

γiaI
α,ρΘ(s)(ηi)

+
n∑
j=1

κjaI
α−βj ,ρΘ(s)(ξj)

+

k∑
r=1

σraI
α+δr,ρΘ(s)(θr)

)∣∣∣∣∣
≤ aI

α,ρ|Θ(s)|(T ) +
1

|Ω|

(
m∑
i=1

|γi|aIα,ρ|Θ(s)|(ηi)

+
n∑
j=1

|κj |aIα−βj ,ρ|Θ(s)|(ξj)

+
k∑
r=1

|σr|aIα+δr,ρ|Θ(s)|(θr)

)

≤

[
(T − a)α

ραΓ(α+ 1)
+

1

|Ω|

(
m∑
i=1

|γi|(ηi − a)α

ραΓ(α+ 1)

+
n∑
j=1

|κj |(ξj − a)α−βj

ρα−βjΓ(α− βj + 1)

+
k∑
r=1

|σr|(θr − a)α+δr

ρα+δrΓ(α+ δr + 1)

)]
ΨΘ(t)%

= Λ1ΨΘ(t)%,

where Λ1 is given by (3.5), which leads to inequality in (4.9). �

Next, we are ready to prove Ulam-Hyers-Rassias and generalized Ulam-
Hyers Rassias stability results.

Theorem 4.11. Assume that f : [a, T ] × R3 → R is a continuous function.
If (H1) is satisfied with with

2L1Λ1

1− L2
< 1.

Then the problem (1.5) is Ulam-Hyers-Rassias stable as well as generalized
Ulam-Hyers Rassias stable on [a, T ].
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Proof. Let z ∈ E1 be a solution of the inequality (4.4) and let x be the unique
solution of the problem (1.5). By applying the triangle inequality and Lemma
4.7 with (4.11), we get

|z(t)− x(t)| =

∣∣∣∣∣z(t)− aI
α,ρFx(s)(t)

− e
ρ−1
ρ

(t−a)

Ω

(
A−

m∑
i=1

γiaI
α,ρFx(s)(ηi)

−
n∑
j=1

κjaI
α−βj ,ρFx(s)(ξj)−

k∑
r=1

σraI
α+δr,ρFx(s)(θr)

)∣∣∣∣∣
= |z(t)− (Qz)(t) + (Qz)(t)− (Qx)(t)|
≤ |z(t)− (Qz)(t)|+ |(Qz)(t)− (Qx)(t)|

≤ Λ1ΨΘ(t)%+
2L1Λ1

1− L2
|z(t)− x(t)|,

where Λ1 is defined by (3.5), which implies that

|z(t)− x(t)| ≤ Λ1ΨΘ(t)%

1− 2L1Λ1
1−L2

.

By setting

Cf,Φ :=
Λ1

1− 2L1Λ1
1−L2

,

we get the following inequality

|z(t)− x(t)| ≤ Cf,Φ%ΨΘ(t).

Hence, the problem (1.5) is Ulam-Hyers Rassias stable. Moreover, if we set

Φf (t) = %ΨΘ(t),

with Φf (0) = 0, then the problem (1.5) is generalized Ulam-Hyers Rassias
stable. The proof is completed. �

5. Examples

In this section, we present two examples which illustrate the validity and
applicability of main results.

Example 5.1. Consider the following nonlinear GPF Pantograph differential
equation via mixed nonlocal conditions of the form:
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CD
2
3
, 1
2x(t) =

2 + |x(t)|+ |x(3
2 t)|+ |

CD
2
3
, 1
2x(3

2 t)|

95e2t cos 2t
(

1 + |x(t)|+ |x(3
2 t)|+ |CD

2
3
, 1
2x(3

2 t)|
) ,

2∑
i=1

(
i+ 1

2

)
x

(
2i+ 1

3

)
+

3∑
j=1

(
2j − 1

5

)
CD

2j+1
10

, 1
2x

(
j

2

)

+

2∑
r=1

(r
3

)
I

r
r+1

, 1
2x

(
r + 1

2r

)
= 1.

(5.1)

Here α = 2/3, ρ = 1/2, λ = 3/2, a = 0, T = 2, m = 2, n = 3, k = 2,
γi = (i + 1)/2, ηi = (2i + 1)/3, i = 1, 2, κj = (2j − 1)/5, βj = (2j + 1)/10,
ξj = j/2, j = 1, 2, σr = r/3, δr = r/(r + 1), θr = (r + 1)/2r, r = 1, 2,

From the given all datas, we obtain that Ω ≈ 1.3039822 6= 0, Λ1 ≈ 9.7044
and

f(t, u, v, w) =
2 + |u|+ |v|+ |w|

95e2t cos 2t (1 + |u|+ |v|+ |w|)
.

For x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [0, 2], we have

|f(t, x1, y1, z1)−f(t, x2, y2, z2)| ≤ 1

95e2t cos 2t
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|) .

The assumptions (H1) is satisfied with L1 = L2 = 1
95 . Hence

2L1Λ1

1− L2
≈ 0.206476 < 1.

Since, all the assumptions of Theorem 3.1 are satisfied, the problem (5.1) has
a unique solution on [0, 2]. Furthermore, we can also compute that

Φ :=
Λ1

1− 2L1Λ1
1−L2

≈ 12.22949 > 0.

Hence, by Theorem 4.8, the problem (5.1) is both Ulam-Hyers and also gen-
eralized Ulam-Hyers stable.
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Example 5.2. Consider the following nonlinear GPF Pantograph differential
equation via mixed nonlocal conditions of the form:

CD
1
2
, 1
3x(t) =

1

4t+3
(

1 + |x(t)|+ |x(1
6 t)|+ |CD

1
2
, 1
3x(1

6 t)|
) ,

3∑
i=1

(
i+ 1

2i

)
x

(
i+ 1

4

)
+

2∑
j=1

(
2j − 1

3

)
CD

j
j+1

, 1
2x

(
j

2

)

+

2∑
r=1

(
r − 1

3

)
I

2r
r+1

, 1
2x

(
r + 1

2r

)
=5.

(5.2)

Here α = 1/2, ρ = 1/3, λ = 1/6, a = 0, T = 2, m = 3, n = 2, k = 2,
γi = (i + 1)/2i, ηi = (i + 1)/4, i = 1, 2, 3, κj = (2j − 1)/3, βj = j/(j + 1),
ξj = j/2, j = 1, 2, σr = (r − 1)/3, δr = 2r/(r + 1), θr = (r + 1)/2r, r = 1, 2,

From the given all datas, we obtain that Ω ≈ 0.809627 6= 0, Λ1 ≈ 10.02678
and

f(t, u, v, w) =
1

4t+3 (1 + |u|+ |v|+ |w|)
.

For x1, x2, y1, y2, z1, z2 ∈ R and t ∈ [0, 2], we have

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ 1

4t+3
(|x1 − x2|+ |y1 − y2|+ |z1 − z2|) .

The assumptions (H1) is satisfied with L1 = L2 = 1
64 . Hence

2L1Λ1

1− L2
≈ 0.31831 < 1.

we can also compute that

Φ :=
Λ1

1− 2L1Λ1
1−L2

≈ 14.708709 > 0.

Hence, by Theorem 4.11, the problem (5.2) is both Ulam-Hyers-Rassias and
also generalized Ulam-Hyers-Rassias stable.

6. Conclusion

In this paper, we constructed the equivalent between the purpose problem
(1.5) and the Volterra fractional integral equation. Afterwards, we investi-
gated sufficient conditions for the existence and uniqueness of solutions of
the purpose problem (1.5) by using Banach contraction mapping principle,
Leray-Schauder nonlinear alternative and Krasnoselskii’s fixed point theorem.
Moreover, we proved four different types of Ulam stability results including
Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias
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stability and generalized Ulam-Hyers-Rassias stability for the problem (1.5).
For the justification, two numerical examples were given to illustrate our main
theoretical results.

We believe that the all results of this paper will provide considerable poten-
tial to interested researchers to develop relevant results concerning qualitative
properties of nonlinear GPF differential equations. In a forthcoming work, we
shall focus on studying the different types of existence results and stability
analysis to an impulsive GPF differential equation with nonlocal fractional
integral multi-point conditions.
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