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POPULATION MODEL
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and Veerasivaji Ramachandran

Abstract. In this paper, we prove the Hyers-Ulam stability and Mittag-

Leffler-Hyers-Ulam stability of a differential equation of Logistic growth

in a population by applying Laplace transforms method.

1. Introduction

The stability problem for various forms of a functional equations arises when
one replaces a functional equation by an inequality which acts as a perturbation
of the equation. The first stability problem of functional equation was initiated
in [31] by a great Mathematician Ulam and which was answered in [9] by Hyers
in the year 1941. And then it was generalized by various authors in [3,8,27,28]
for additive mappings and linear mappings, respectively. Since then several
stability problems for different functional equations have been investigated in
[4, 6, 18,24].

Let Y be a normed space and let I be an open interval. Assume that for
any function f : I → Y satisfying the differential inequality∥∥∥an(t)y(n)(t) + · · ·+ a1y

′(t) + a0y(t) + h(t)
∥∥∥ ≤ ϵ

for all t ∈ I and for some ϵ > 0, there exists a solution f0 : I → Y of the
differential equation

an(t)y
(n)(t) + · · ·+ a1y

′(t) + a0y(t) + h(t) = 0

such that ∥f(t)− f0(t)∥ ≤ K(ϵ) for any x ∈ I, where K(ϵ) is an expression of
ϵ only. Then, we say that the above differential equation has the Hyers-Ulam
stability.
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If the preceding statement is also true when we replace ϵ and K(ϵ) by ϕ(t)
and φ(t), where ϕ, φ are appropriate functions not depending on x and xa

explicitly, then we say that the corresponding differential equation has the
generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

Obloza seems to be the first author who has investigated the Hyers-Ulam
stability of linear differential equations [25, 26]. Thereafter, in 1998, Alsina
and Ger [2] were the first authors who investigated the Hyers-Ulam stability of
differential equations. They proved in [2] the following theorem.

Theorem 1.1. Assume that a differentiable function f : I → R is a solution
of the differential inequality ∥x′(t)− x(t)∥ ≤ ϵ, where I is an open sub interval
of R. Then there exists a solution g : I → R of the differential equation
x′(t) = x(t) such that for any t ∈ I, we have ∥f(t)− g(t)∥ ≤ 3ϵ.

This result of Alsina and Ger [2] has been generalized by Takahasi [30].
They proved in [30] that the Hyers-Ulam stability holds true for the Banach
Space valued differential equation y′(t) = λy(t). Indeed, the Hyers-Ulam sta-
bility has been proved for the first order linear differential equations in more
general settings [10–13, 17]. In 2014, Alqifiary and Jung [1] proved the gener-
alized Hyers-Ulam stability of linear differential equation by using the Laplace
transform method (see also [29]).

Now a days, the Hyers-Ulam stability of differential equations are inves-
tigated by number of authors in [5, 7, 14, 15, 19–23, 32] and the Hyers-Ulam
stability of differential equations has been given attention.

We may apply these terminologies for other differential equations also. In
this paper, by applying Laplace transforms method, we are interested in proving
the Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam stability of a differen-
tial equation of logistic growth in a population of the form

du

dt
= u− g(u)(1)

with initial condition

u(0) = u0,(2)

where g is a nonlinear function of u.

2. Preliminaries

In this section, we introduce some notations, definitions and preliminaries
which are used throughout this paper.

Throughout this paper, F denotes the real field R or the complex field C. A
function f : (0,∞) → F is of exponential order if there exists a constant M(>
0) ∈ R such that |f(t)| ≤ Meat for all t > 0. For each function f : (0,∞) → F
of exponential order, we define the Laplace transform of f by

L{f(t)} = F (s) =

∫ ∞

0

f(t) e−st dt.
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The Laplace transform of f is sometimes denoted by L(f). It is also well-known
that L is linear and one-to-one. Then, at points of continuity of f , we have

f(t) =
1

2πi
lim
n→∞

∫ α+iT

α−iT

F (s)est ds

=
1

2π

∫ ∞

−∞
eα+iyF (α+ iy) dy,

this is called the inverse Laplace transform.

Definition (Convolution). Given two functions f and g, both Lebesgue in-
tegrable on (−∞,+∞). Let S denote the set of x for which the Lebesgue
integral

h(x) =

∫ ∞

−∞
f(t) g(x− t) dt

exists. This integral defines a function h on S called the convolution of f and
g. We also write h = f ∗ g to denote this function.

Theorem 2.1. The Laplace transform of the convolution of f(x) and g(x) is
the product of the Laplace transform of f(x) and g(x). That is,

L{f(x) ∗ g(x)} = L{f(x)} L{g(x)} = F (s) G(s)

or

L
{∫ ∞

0

f(t) g(x− t) dt

}
= L(f)L(g) = F (s) G(s),

where F (s) and G(s) are the Laplace transforms of f(x) and g(x), respectively.

Definition ([16]). The Mittag-Leffler function of one parameter is denoted by
Eα(z) and defined as

Eα(z) =

∞∑
k=0

1

Γ(αk + 1)
zk,

where z, α ∈ C and Re(α) > 0. If we put α = 1, then the above equation
becomes

E1(z) =

∞∑
k=0

1

Γ(k + 1)
zk =

∞∑
k=0

zk

k!
= ez.

Definition ([16]). The generalization of Eα(z) is defined as a function

Eα,β(z) =

∞∑
k=0

1

Γ(αk + β)
zk,

where z, α, β ∈ C, Re(α) > 0 and Re(β) > 0.
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3. Main results

Firstly, we prove the Hyers-Ulam stability of the differential equation (1)
with initial condition (2).

Theorem 3.1. The logistic growth in a population differential equation (1) has
the Hyers-Ulam stability.

Proof. For every ϵ > 0, and assume that u(t) ∈ C(I) satisfies the differential
inequality

|u′(t)− u(t) + g(u)| ≤ ϵ(3)

for all t ∈ I. We have to show that there is a real number K > 0 which is
independent of ϵ and u(t) such that |u(t)− v(t)| ≤ Kϵ for some v ∈ C(I) which
satisfies the differential equation v′(t) = v(t)− g(v) for all t ∈ I.

Let us consider a function p : (0,∞) → R such that p(t) =: u′(t)−u(t)+g(u)
for all t > 0. In view of (3), we have |p(t)| ≤ ϵ. Taking Laplace transform to
p(t), we have

L{p} = (s− 1)L{u} − u(0)− L{g(u)},(4)

P (s) = (s− 1) U(s)− u0 −G(s)(5)

and thus

L{u} = U(s) =
U(s) + u(0)−G(s)

s− 1
,(6)

where U(s) = L{u(t)}, P (s) = L{p(t)} and G(s) = L{g(u)} are the Laplace
transforms of the functions u(t), p(t) and g(u(t)), respectively. In view of the
(4), a function v0 : (0,∞) → R is a solution of (1) with (2) if and only if

(s− 1)L{v0} = v0(0) + L(g).

Let us define a solution v(t) = u0 et + (et ∗ g), then we have v(0) = u(0).
Then applying the Laplace transform to v(t), we obtain

L{v} = V (s) =
u0 +G(s)

(s− 1)
.(7)

On the other hand, we have

L{v′(t)− v(t) + g(v)} = (s− 1)V (s)− v(0)− L(g).

Using (7), we get L{v′(t)− v(t) + g(v)} = 0. Since L is a one-to-one operator
and linear, then we get v′(t) = v(t)− g(v). This means that v(t) is a solution
of (1) with (2). It follows from the equations (6) and (7) that

L{u(t)} − L{v(t)} = U(s)− V (s) =
P (s)−G(s) + u0

(s− 1)
− u0 +G(s)

(s− 1)
=

L{p}
(s− 1)

⇒ L{u(t)− v(t)} = L
{
p(t) ∗ et

}
.



LAPLACE TRANSFORM AND HYERS-ULAM STABILITY 1167

The above equalities gives that u(t)− v(t) = p(t)∗ et. Taking modulus on both
sides and using |p(t)| ≤ ϵ, we get

|u(t)− v(t)| =
∣∣p(t) ∗ et∣∣ ≤ ∣∣∣∣∫ t

0

p(t) e(t−x) dx

∣∣∣∣
≤ ϵ

∫ t

0

∣∣∣e(t−x)
∣∣∣ dx ≤ ϵ et

∫ t

0

e−x dx = Kϵ

for all t > 0. Hence, |u(t)− v(t)| ≤ Kϵ. Therefore, the linear differential
equation (1) with (2) has the Hyers-Ulam stability. This completes the proof.

□

Similar to Theorem 3.1, we will prove the Hyers-Ulam-Rassias stability for
the differential equation (1) with (2). For the sake of the completeness of this
paper, we provide some part of the proof.

Theorem 3.2. Let ϵ > 0, u(t) be a continuously differentiable function and
ϕ : (0,∞) → (0,∞) satisfies the inequality

|u′(t)− u(t) + g(u)| ≤ ϕ(t)ϵ(8)

for all t ∈ I. Then there exists a real number K > 0 which is independent of ϵ
and u such that

|u(t)− v(t)| ≤ Kϕ(t)ϵ

for some v ∈ C(I) satisfies the differential equation v′(t)− v(t) + g(v) = 0 for
all t ∈ I.

Proof. Consider a function p : (0,∞) → R such that p(t) =: u′(t)− u(t) + g(u)
for all t > 0. In view of (8), we have |p(t)| ≤ ϕ(t)ϵ.

By applying the same procedure which is used in the proof of Theorem 3.1,
we can reach that

u(t)− v(t) = p(t) ∗ et.
Taking modulus on both sides and using |p(t)| ≤ ϕ(t)ϵ, we get

|u(t)− v(t)| =
∣∣p(t) ∗ et∣∣ ≤ ∣∣∣∣∫ t

0

p(t) e(t−x) dx

∣∣∣∣
≤ ϵϕ(t)

∫ t

0

∣∣∣e(t−x)
∣∣∣ dx ≤ Kϕ(t)ϵ

for all t > 0. Then the linear differential equation (1) with (2) has the Hyers-
Ulam-Rassias stability. Hence the proof. □

Finally, we shall investigate the Mittag-Leffler-Hyers-Ulam stability of the
equation (1) with initial condition (2).

Theorem 3.3. The logistic growth in a population differential equation (1) is
Mittag-Leffler-Hyers-Ulam stable.
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Proof. Given ϵ > 0. Suppose that u(t) ∈ C(I) satisfying the differential in-
equality

|u′(t)− u(t) + g(u)| ≤ ϵEα(t)(9)

for all t ∈ I, where Eα(t) is the Mittag-Leffler function. We wish to prove that
there exists a real number K > 0 which is independent of ϵ and u(t) such that
|u(t)− v(t)| ≤ KϵEα(t) for some v ∈ C(I) satisfies v′(t) = v(t) − g(v) for all
t ∈ I.

Define a function p : (0,∞) → R such that p(t) =: u′(t)− u(t) + g(u) for all
t > 0. In view of (9), we have |p(t)| ≤ ϵEα(t). Taking Laplace transform to
p(t), we have

L{p} = (s− 1)L{u} − u(0)− L{g(u)}(10)

and thus

L{u} = U(s) =
U(s) + u(0)−G(s)

s− 1
.(11)

In view of the (10), a function v0 : (0,∞) → R is a solution of (1) with (2) if
and only if

(s− 1)L{v0} = v0(0) + L(g).
Set v(t) = u0e

t+(et∗g), then we have v(0) = u(0). Taking Laplace transform
to v(t), we obtain

L{v} = V (s) =
u0 +G(s)

(s− 1)
.(12)

On the other hand,

L{v′(t)− v(t) + g(v)} = (s− 1)V (s)− v(0)− L(g).

Using (12), we get L{v′(t)− v(t) + g(v)} = 0. Since L is a one-to-one operator
and linear, then we get v′(t) = v(t)− g(v). This means that v(t) is a solution
of (1). It follows from (11) and (12) that

U(s)− V (s) =
P (s)−G(s) + u0

(s− 1)
− u0 +G(s)

(s− 1)
=

L{p}
(s− 1)

⇒ L{u(t)− v(t)} = L
{
p(t) ∗ et

}
.

The above equalities show that u(t)−v(t) = p(t)∗ et. Taking modulus on both
sides and using |p(t)| ≤ ϵEα(t), we get

|u(t)− v(t)| =
∣∣p(t) ∗ et∣∣ ≤ ∣∣∣∣∫ t

0

p(t) e(t−x) dx

∣∣∣∣
≤ |p(t)|

∣∣∣∣∫ t

0

e(t−x) dx

∣∣∣∣
≤ ϵEα(t)

∣∣∣∣∫ t

0

e(t−x) dx

∣∣∣∣
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for all t > 0, where K =
∣∣∣∫ t

0
e(t−x) dx

∣∣∣ exists. Hence, |u(t)− v(t)| ≤ KϵEα(t).

Then the linear differential equation (1) with (2) has the Mittag-Leffler-Hyers-
Ulam stability. □

In analogous to Theorem 3.3, we have the following result which shows
the Mittag-Leffler-Hyers-Ulam-Rassias stability of the differential equation (1).
The method of proof is similar, but we still state it for the sake of completeness.

Theorem 3.4. The logistic growth in a population equation (1) with (2) has
the Mittag-Leffler-Hyers-Ulam-Rassias stability.

Proof. Given ϵ > 0. Suppose that u(t) ∈ C(I) and ϕ(t) : (0,∞) → (0,∞)
satisfying

|u′(t)− u(t) + g(u)| ≤ ϕ(t)ϵEα(t)(13)

for all t ∈ I. We wish to prove that there exists a real number K > 0 which is
independent of ϵ and u such that

|u(t)− v(t)| ≤ Kϕ(t)ϵEα(t)

for some v ∈ C(I) satisfies v′(t)−v(t)+g(v) = 0 for all t ∈ I. Define a function
p : (0,∞) → R such that p(t) =: u′(t)− u(t) + g(u) for all t > 0.

In view of (13), we have

|p(t)| ≤ ϕ(t)ϵEα(t).(14)

By using the same technique in as applied in the proof of Theorem 3.3 and
using equation (14), we get

|u(t)− v(t)| ≤ ϕ(t)ϵEα(t)

∣∣∣∣∫ t

0

e(t−x) dx

∣∣∣∣
for all t > 0, where K =

∣∣∣∫ t

0
e(t−x) dx

∣∣∣ exists. Hence,

|u(t)− v(t)| ≤ Kϕ(t)ϵEα(t).

Thus the linear differential equation (1) has the Mittag-Leffler-Hyers-Ulam-
Rassias stability. This finishes the proof. □

4. Application

In this section, we will introduce some examples to make it easier to under-
stand the main results of this paper.

First, we study the logistic growth model in a population

dw

dt
= ξw

(
1− w

η

)
,(15)

where ξ and η are positive constants. Here w = w(t) represents the population

of the species at time t and ξw
(
1− w

η

)
is the per capita growth rate, and η is
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the carrying capacity of the environment. Non-dimensionalization of equation
(15) by setting

u(t) =
w(t)

η
, t = ξτ,

results in

du

dt
= u (1− u).(16)

If w(0) = w0, then u(0) = w0

η , and the analytical solution of the equation (16)

follows easily

u(τ) =
1

1 +

(
η

w0 − 1

)
e−t

.

Now, we will apply Theorem 3.1 to the equation (16) to establish the Ulam
stability.

Example 4.1. We consider the following logistic differential equation (16), it
can be written as u′(t) = u(t)− u2, where g(u) = u2 is a nonlinear function.

If a continuously differentiable function w : [0,∞) → R of exponential order
satisfies |u′(t)−u(t)+u2| ≤ ϵ for all t ≥ 0 and for some ϵ > 0, then Theorem 3.1
implies that there exists a solution y : [0,∞) → R of the differential equation
(16) such that y(t) is of exponential order and |w(t)− y(t)| ≤ Kϵ for all t ≥ 0.

Example 4.2. We consider the following non-homogeneous linear differential
equation

u′(t) = u(t)− u3,(17)

where g(u) = u3 is a nonlinear function. If a continuously differentiable func-
tion w : [0,∞) → R of exponential order satisfies

|u′(t)− u(t) + u3| ≤ ϵ

for all t ≥ 0 and for some ϵ > 0, then Theorem 3.1 implies that there exists
a solution y : [0,∞) → R of the differential equation (16) such that y(t) is of
exponential order and |w(t)− y(t)| ≤ Kϵ, for t ≥ 0.

Remark 4.3. The above examples are also true when we replace ϵ and Kϵ
with ϕ(t)ϵ and Kϕ(t)ε, respectively, where ϕ(t) is an increasing function. In
this case, we see that the corresponding differential equations have the Hyers-
Ulam-Rassias stability.

Remark 4.4. The differential equations (16) and (17) have the Mittag-Leffler-
Hyers-Ulam stability. In particular, they also have the Mittag-Leffler-Hyers-
Ulam-Rassias stability when ϕ(t) is an increasing function.
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