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HYERS-ULAM-RASSIAS STABILITY OF A CUBIC
FUNCTIONAL EQUATION

ABBAS NAJATI

ABSTRACT. In this paper, we will find out the general solution and in-
vestigate the generalized Hyers—Ulam-Rassias stability problem for the
following cubic functional equation

3f(z +3y) + f(3z —y) = 15f(z +y) + 15f(z — y) + 80f(y).

The concept of Hyers-Ulam-Rassias stability originated from Th. M.
Rassias’ stability theorem that appeared in his paper: On the stability
of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72
(1978), 297-300.

1. Introduction

The stability problem of functional equations originated from a question of
Ulam [33] concerning the stability of group homomorphisms : Let (G1,*) be a
group and let (G2, ¢, d) be a metric group with the metric d(:,-). Given € > 0,
does there exist a 6(¢) > 0 such that if a mapping h : G1 — G, satisfies the
inequality

d(h(z xy),h(z) o h(y)) <4
for all z,y € G1, then there is a homomorphism H : G; — G with
d(h(z),H(z)) < ¢
for all z € G417

In other words, we are looking for situations when the homomorphisms are
stable, i.e., if a mapping is almost a homomorphism, then there exists a true
homomorphism near it. The case of approximately additive mappings was
solved by Hyers [10] under the assumption that G; and G2 are Banach spaces.
In 1978, a generalized version of the theorem of Hyers for approximately linear
mappings was given by Rassias [28]. During the last decades, the stability
problems of several functional equations have been extensively investigated
by a number of authors [3, 4, 8, 12, 15, 17, 19, 20, 24, 25, 26, 31]. The
terminology ‘generalized Hyers—Ulam—Rassias stability’ originates from these
historical backgrounds. These terminologies are also applied to the case of
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other functional equations. For more detailed definitions of such terminologies,
we can refer to [11, 13, 29].

Quadratic functional equation was used to characterize inner product spaces
[1, 2, 14]. Several other functional equations were also to characterize inner
product spaces. A square norm on an inner product space satisfies the impor-
tant parallelogram equality

e +ylI” + llz — I = 2([=[* + l|yI*)-
The functional equation

(1.1) fle+y)+ flz-y) =2f(z) + 2/ (y)

is related to a symmetric biadditive mapping [1, 22]. It is natural that each
equation is called a quadratic functional equation. In particular, every solution
of the quadratic equation (1.1) is said to be a quadratic mapping. It is well
known that a mapping f between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive mapping B such that f(z) = B(z, z)
for all = (see [1, 22]). The biadditive mapping B is given by

(12) Ble,y) = (fa+9) — flz —1).

A Hyers—Ulam stability problem for the quadratic functional equation (1.1)
was proved by Skof for mappings f : E; — E», where E; is a normed space and
E> is a Banach space (see [32]). Cholewa [6] noticed that the theorem of Skof
is still true if the relevant domain E; is replaced by an Abelian group. In [7],
Czerwik proved the generalized Hyers-Ulam-Rassias stability of the quadratic
functional equation (1.1). Grabiec [9] generalized these results mentioned above.
Jung [21] dealt with stability problems for the quadratic functional equation
of Pexider type, fi(z +y) + folz — y) = fs(z) + fu(y), and Jun and Lee
(18] proved the generalized Hyers-UlamRassias stability of the Pexiderized
quadratic equation.

_Jun and Kim [16] introduced the following functional equation

(1.3) FQz+y) + fQz —y) = 2f(z +y) +2f(z — y) + 12f ()

and they established the general solution and the generalized Hyers—Ulam-
Rassias stability problem for the functional equation (1.3).
Park and Jung [27] introduced the functional equation

(1.4) f@z+y) + fBz —y) =3f(z +y) +3f(x — y) + 48 ()

and they established the general solution and the generalized Hyers—Ulam—
Rassias stability problem for the functional equation (1.4).

It is easy to see that the function f(z) = cz® is a solution of the functional
equations (1.3) and (1.4). Thus, it is natural that (1.3) and (1.4) is called a
cubic functional equation and every solution of the cubic functional equations
(1.3) and (1.4) is said to be a cubic mapping.
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In this paper, we introduce the following new functional equation, which is
somewhat different from (1.3) and (1.4) :

(1.5) 3f(x+3y)+ fBz—y) =15f(z +y) + 15f(z — y) + 80f(y).

It is easy to see that the function f(z) = cz? is a solution of the functional
equation (1.5).

In this paper, we establish the general solution and the generalized Hyers—

Ulam-Rassias stability problem for the functional equation (1.5).

We recall some basic facts concerning quasi-Banach spaces and some pre-
liminary results.

Definition 1.1 ([5], [30]). Let X be a real linear space. A quasi-norm is a
real-valued function on X satisfying the following:
(¢) ||z|| > 0 for all z € X and ||z|| = 0 if and only if z = 0.
(1) || Azl = |A|ljz|| for al A € R and all z € X.
(ii1) There is a constant K > 1 such that ||z + y|| < K(||z|| + ||y||) for all
z,y€ X.

It follows from condition (i47) that

2n
|2
=1

2n+1 2n+1

2n
<K Ylal | > o < B 3 e

for all integers n > 1 and all z1,%s,...,%2,.1 € X.

The pair (X, | - ||) is called a quasi-normed space if || - || is a quasi-norm
on X. The smallest possible K is called the modulus of concavity of || - ||. A
quasi-Banach space is a complete quasi-normed space.

A quasi-norm || - || is called a p-norm (0 < p < 1) if

llz +yll” < [lell” + llyll”

for all z,y € X. In this case, a quasi-Banach space is called a p-Banach space.
By the Aoki-Rolewicz theorem [30] (see also [5]), each quasi-norm is equiv-

alent to some p-norm. Since it is much easier to work with p-norms than

quasi-norms, henceforth we restrict our attention mainly to p-norms.
Throughout this note, we will denote by (G, +) an abelian group.

2. Solution of Eq. (1.5)

Let X be real vector space. We here present the general solution of (1.5).

Theorem 2.1 ([16]). A mapping f : G — X satisfies the functional equation
(1.3) if and only if there exist a mapping B : G x G x G = X such that
f(z) = B(z,z,x) for all z € G, and B is symmetric for each fized one variable
and is additive for fized two variables.

Theorem 2.2 ([23]). A mapping f : G — X satisfies the functional equation
(1.3) if and only if f : G — X satisfies the functional equation

(2.1) 2f(z+2y) + f2r —y) =5f(z +y) +5f(z —y) + 15f(y)



828 ABBAS NAJATI

for allz,y € G.

Theorem 2.3. A mapping f : G = X satisfies the functional equation (2.1)
if and only if f : G — X satisfies the functional equation (1.5).

Proof. (Necessity). Putting 2 = y = 0 in (2.1), we get f(0) = 0. Set y = 0 in
(2.1) to get f(2z) = 8f(x) for all x € G. Letting z = 0 in (2.1), we obtain that
f(=y) = —f(y) for all y € G. Replacing z by = + y in (2.1), we have

(2.2) 2f(x+3y) + fx+y) =5f(z+2y)+5f(z) +15f(y)
for all z,y € G. Since f is odd, replacing y by y — z in (2.1), we get that
(23) fBz-y)-2f(z—-2y) =5f2z—y) - 15f(z—y) + 5f(y)
for all z,y € G. Replacing z and y by y and —z in (2.3), respectively, we obtain
(24)  fQBy+a)-2f(2x+y) =5f(z+2y) - 15f(z +y) - 5f(z)
for all z,y € G. Adding (2.2) and (2.4), we get that
(2.5) 3f(x+3y)— f2x +y) =10f(z +2y) — 15f(z + y) + 15f(y)
for all z,y € G. Once again adding (2.5) and (2.3), we obtain

3f(z+3y) + f(3z —y) = [2f(z — 2y) + f(2z +v)]
(2.6) +5[2f(x + 2y) + f(2z — y)]

—15f(z —y) — 15f(z +y) + 20f(y)

for all z,y € G. Therefore (1.5) follows from (2.1) and (2.6).

(Sufficiency). Putting z = y = 0 in (1.5), we get f(0) = 0. Set y = 0 in
(1.5) to get f(3z) = 27f(z) for all z € G. Letting z = 0 in (1.5), we obtain
that f(—y) = —f(y) for all y € G. Replacing z by z — y in (1.5), we have

(2.7) 3f(x+2y) + f(3z —4y) = 15f(x — 2y) + 15f(z) + 80f (y)
for all z,y € G. Since f is odd, replacing y by z + y in (1.5), we get that
(2.8) 3f(dz+3y) + f2x —y) = 15f(2z + y) + 80f(z +y) — 15f(y)

for all z,y € G. Replacing = and y by y and —z in (2.8), respectively, and
multiplying both sides of (2.8) to (—1), we obtain

(2.9) 3f(3z —4y) — f(z+2y) = 15f(x — 2y) + 80f(z —y) — 15f(z)
for all z,y € G. Adding (2.7) and (2.9), we have

(2.10) 2f(Bz —4y) + fz +2y) = 15f(x — 2y) + 40f(z — y) + 40f (v)
for all z,y € G. Therefore we infer from (2.7) and (2.10) that

(2.11) flz+2y) = 3f(x - 2y) = 6f(z) +24f(y) — 8f(z — y)

for all z,y € G. Replacing y by —y in (2.11), we obtain

(2.12) flz—2y) - 3f(z+2y) =6f(z) — 24f(y) —8f(z + )
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for all z,y € G. It follows from (2.11) and (2.12) that

(2.13) Hz+2y) =3f(x+y)+ flz—y) +6f(y) —3f(2)
for all z,y € G. Replacing z and y by —y and z in (2.13), respectively, we get
(2.14) fz—y)=3f(z—y) - flz+y) +6f(z) +3f(y)
for all z,y € G. Hence (2.1) follows from (2.13) and (2.14). a

Corollary 2.4. A mapping f : G = X satisfies the functional equation (1.3)
if and only if f : G — X satisfies the functional equation (1.5). Therefore A
mapping f : G — X satisfies the functional equation (1.5) if and only if there
exists a mapping B : G X G x G — X such that f(z) = B(z,z,z) for all z € G,
and B is symmetric for each fized one variable and is additive for fized two
variables.

3. Generalized Hyers—Ulam—Rassias stability of Eq. (1.5)

From now on, let £ be a normed real linear space with norm || - ||z and X
be a real p-Banach space with norm || - ||x. In this section, using an idea of
Gavruta [8] we prove the stability of Eq. (1.5) in the spirit of Hyers, Ulam,
and Rassias. Thus we find the condition that there exists a true cubic mapping
near a approximately cubic mapping. For convenience, we use the following
abbreviation for a given mapping f: G — X

Df(z,y) :=3f(x+3y) + fBz —y) - 15f(z +y) — 15f(z — y) — 80f(y)
for all z,y € G.

Theorem 3.1. Let ¢ : G x G — [0,00) be a function such that

oo 1
N pan
(3.1 &(zx) = HEZO YT (3"z,0) < 00
and
1
'2 1' n n =
(3.2) Jim oes (3%, 3%y) =0

for all z,y € G. Suppose that a mapping f : G — X satisfies the inequality

(3.3) IDf(z, y)llx < wlz,y)

for all x,y € G. Then there erists a unique cubic mapping T : G — X which
satisfies Eq. (1.5) and the inequality

40 1., 9%
(3.4) |7@) - 1@) - Z£0)| < 5 [F@)]
for all x € G. The mapping T : G — X is given by
(3.5) T(z) = lim %; £(3m2)

for allx € G.
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Proof. Putting y = 0 in (3.3) and dividing both sides of (3.3) by 27, we have
f(3z
3.6 ” (27 -

f@) - 250, < 5l 0)

_27

for all z € G. Replacing z by 3"z in (3.6) and dividing both sides of (3.6) by
27", we get

(3.7)

f3™1z)  f(3"z) 80 1 .
| 77+l g7 gpe+l (0)|’x527n+1‘p(3 z,0)

for all z € G and all integers n > 0. Since X is a p-Banach space, we have

i[f(siflx)_f(w)_ 80 0]
X

— 27i+1 271 27i+1
(| f(3H ) f(3'z) 80 “,,
< —= — -
Zz:; H 27i+1 27 27141 10) X
< ; 1 P(3¢
for all z € G and all integers n > k > 0. Hence
f3z)y  f(3*z) < 80 LI 1 pai
(38) ” ol gtk Z% gt/ (O)Hx = ; g7y (3'2,0)

for all z € G and all integers n > k > 0. Since Y=, 55+ is convergent, it follows

from (3.1) and (3.8) that the sequence {4237—5”2} is a Cauchy sequence in X for

all z € G. Since X is a p-Banach space, it follows that the sequence {%’Q}
converges for all z € G. We define T : G — X by

T(z) = lim 1(3"7)

for all z € G. So it follows from (3.2) and (3.3) that

1 1
- 1 - n n < 1l - n n —
IDT(z,y)llx = lim 5= lIDf(3"2,3"y)llx < lim 5-"e(3",3"y) =0
for all z,y € G. Hence by Corollary 2.4, T is cubic.
One can obtain (3.4) by putting k = 0 and letting n — oo in (3.8).
It remains to show that T is unique. Suppose that there exists another cubic
mapping @ : G — X which satisfies (1.5) and (3.4). Since Q(3"z) = 27"Q(x)
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for all z € G and all n € N, we conclude that
1Q@) - T@Ify = lim W 1Q("z) - 732l
Tim @) - s~ 10 po)|”

1 "
,}Eﬂom ?(3")

IN

IN

i 1
o 8 27p £ 37

©P(3™mz,0) =

for all z € G. Hence we have Q(z) = T(z) for all £ € G which gives the
uniqueness of T'. O

Corollary 3.2. Let § be non-negative real number and let f : E — X be
mapping satisfying

(3.9) IDf(z,y)llx <6

for all x,y € E. Then there exists a unique cubic mapping T : E — X which
satisfies Eq. (1.5) and the inequality
1 20
T(z) - “ <ko{—— 4+
” (z) = f (@) x = 6{(2717 —1)7 * 689}
for all x € E where K is the modulus of concavity of || - || x.
Moreover, if for each fited x € E the mapping t — f(tz) from R to X is
continuous, then T'(tx) = t3T (z) for allt € R and all z € E.

Proof. Define ¢ : E x E — [0,00) by ¢(x,y) = 6 for all z,y € E. Letting
z =y =0in (3.9), we get that ||f(0)|| < 8/106. By Theorem 3.1 there exists a
unique cubic mapping T : E — X such that

76~ )|, < K|r@ - 101 - Zr0)]  + K| o0
SKH{er%}

for all z € E. Under the assumption that f(tx) is continuous in ¢ € R for each
fixed z € E, by the same reasoning as in the proof of [28], the cubic mapping
T:E — X satisfies T'(tz) = t3T(z) for all z € E and all t € R. O

Corollary 3.3. Let 6 be non-negative real number and let o, 8 € (0, 3). Suppose
that a mapping f : E — X satisfies

IDf(z,y)llx < 8(llzl|% + llyll2)

for all z,y € E. Then there exists a unique cubic mapping T : E — X which
satisfies Eq. (1.5) and the inequality
0

|r@ -s@)|, < Gl
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forallz € E.
Moreover, if for each fized x € E the mapping t — f(tz) from R to X is
continuous, then T (tz) = 3T (z) for allt e R and all z € E.

Proof. Define ¢ : E x E — [0,00) by

o(x,y) = 0(l]% + lyllg)

for all z,y € E. Since ¢(0,0) = 0, then f(0) = 0. By Theorem 3.1 there exists
a unique cubic mapping T : E — X satisfying in the requirement inequality.
Under the assumption that f(tz) is continuous in ¢ € R for each fixed z € E,
by the same reasoning as in the proof of [28], the cubic mapping T : E — X
satisfies T'(tz) = t3T(z) for all t € R. O

Remark 3.4. If a mapping f : E — X satisfies (1.3), it is easy to show that
f(nz) =n3f(z) for all z € E and all n € Z. So we can conclude that f(rz) =
r3f(z) for all x € E and all r € Q. Hence by Corollary 2.4, if a mapping
f: E — X satisfies (1.5), then f(rz) =r3f(z) forallz € Eand allr € Q.

Corollary 3.5. Let 8 be non-negative real number and let 8 € (0,3). Suppose
that a mapping f : E — X satisfies

(3.10) IDf(z,9)|lx < 6llyll%

for all z,y € E. Then the mapping f : E — X is cubic.
Moreover, if for each fited x € E the mapping t — f(tz) from R to X is
continuous, then f(tx) =t3f(x) for allt € R and all z € E.

Proof. Letting z = y = 0 in (3.10), we get that f(0) = 0. So by letting y =0
in (3.10), we get f(3z) = 27f(z) for all z € E. Hence by using induction we
have

(3.11) f(3"x) =27"f(x)
z € FE and all n € Z. By Theorem 3.1 the mapping T : E — X defined by

. 1 n
T(@) = Jim, g f"0)
is cubic. Therefore it follows from (3.11) that f = T. So the mapping f : E — X
is cubic. The rest of the proof is obvious by Remark 3.4. O

Corollary 3.6. Let 8 be non-negative real number and let o € (0, 3). Suppose
that a mapping f : E — X satisfies

(3.12) I1Df(=,y)llx < OllzllE

for all x,y € E. Then the mapping f : E — X is cubic.
Moreover, if for each fited x € E the mapping t — f(tz) from R to X is
continuous, then f(tx) = t*f(x) for allt € R and all z € E.
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Proof. Letting = y = 0 in (3.12), we get that f(0) = 0. So by letting z = 0
in (3.12), we get
(3.13) 3f(3y) — 95f(y) — 14f(-y) =0
for all y € E. We decompose f into the even part and the odd part by putting
T)+ fl—x z)— f(—z
1= LDy g @)= S

forall z € E. It is clear that f(z) = f.(z) + f,(z) for all z € E. It follows from
(3.13) that

(314) [37(3y) — 109 (y)] + [3f5(3y) — 81fo(y)] =0
for all y € E. Replacing y by —y in (3.14), we get
(315) - [3f.(3y) — 109fe(y)] — [3fo(3y) — 81f,(y)] =0
for all y € E. Therefore it follows from (3.14) and (3.15) that
109
FeBy) = —=fely),  fo(By) = 27/o(y)
for all y € E. Hence by using induction we have

@) = () R0, L6 =27 0)

for ally € E and all n € Z. So we have

f@) = (50) 1) + 27 )
forallye Eand alln € Z. So
(3.16) ! (23;‘1/) = (%))nfe(y) + fow)

for all y € E and all n € Z. By Theorem 3.1 the sequence {%?;l—nyl} is Cauchy
for all y € E and the mapping T : E — X defined by

1
T(y) = lim - f(3"y)

is cubic. Therefore it follows from (3.16) that f.(y) = 0 for all y € E. Therefore
f = f, and we conclude that f = T. So the mapping f : E — X is cubic.
The rest of the proof is obvious by Remark 3.4. O

Corollary 3.7. Let 8,a, be non-negative real numbers such that a + 3 €
(0,3). Suppose that a mapping f : E — X satisfies

(3.17) IDf (2, y)llx < 6l /lyll5

for all z,y € E (by putting || - ||g = 0). Then the mapping f : E — X is cubic.
Moreover, if for each fived x € E the mapping t — f(tx) from R to X is
continuous, then T(tx) = t3T(z) for allt € R and oll x € E.



834 ABBAS NAJATI

Proof. If @« = 0 or 8 = 0, the result follows from Corollaries 3.5 and 3.6.
Therefore we may assume that o, 8 > 0. Letting z = y = 0 in (3.17), we get
that f(0) = 0. So by letting y = 0 in (3.17), we get f(3z) = 27f(x) for all
z € E. Hence by using induction we have

f3"x) = 27" f ()

x € E and all n € Z. The rest of the proof is similar to the proof of Corollary
3.5. 0O

Theorem 3.8. Let & : E x E — [0,00) be a function such that

o~ R x
“— npHr{
(3.18) B(z) = 227 ® (3n,o) < o0
and
n vy _

(3.19) Jim 27°@ (5, &) =0
for all x,y € E. Suppose that a mapping f : E — X satisfies the inequality
(3.20) IDf(z,y)llx < ®(z,y)

for all x,y € E. Then there exists a unique cubic mapping T : E — X which
satisfies Eq. (1.5) and the inequality

1=, 1%
(3.21) I7(2) - f@llx < 5=[3()]
for all x € E. The mapping T : E — X is given by
(3.22) T(z) = lim 27 f( 3n)
forallz c¢ E.

Proof. Tt follows from (3.18) that ®(0,0) = 0, and therefore (3.20) implies that
£(0) = 0.
Putting y = 0 in (3.20), we have

(3.23) 1 (32) — 27f(2)l|lx < ®(=,0)

for all z € E. Replacing x by z5y in (3.23) and multiplying both sides of (3.23)
to 277, we get

(3.24) |27 () - 21 (55) |, <272 (550)

for all € E and all integers n > 0. Since X is a p-Banach space, we have

p
B lrs() -] < s427z+1f<3,+1>—27if<%>n;:

e ()

IA

M: I M:

I
kol
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for all z € E and all integers n > k > 0. Hence

03 fars(gh) (2] < S )
i=k

for all z € E and all integers n > k > 0. It follows from (3.18) and (3.25) that
the sequence {27"f(:%)} is a Cauchy sequence in X for all z € E. Since X
is a p-Banach space, it follows that the sequence {27" f (%)} converges for all
r€E. WedefineT: FE — X by

. npef T
T(@) = Jim 27 (57)
for all z € E. Putting k = 0 and letting n — oo in (3.25), we get (3.21).
The rest of the proof is similar to the proof of Theorem 3.1. O

Corollary 3.9. Let 8 be a non-negative real number and o, 8 € (3,00). Suppose
that a mapping f : E — X satisfies

IDf (@ y)llx < 6(l2lE + llyl13)
for all z,y € E. Then there exists a unique cubic mapping T : E — X which

satisfies Eq. (1.5) and the inequality
|7@) - 1)

4 a
<——ll=ll®

X (3or —27P)p

for all x € E. Also, if for each fized x € X the mapping t — f(tz) from R to

X is continuous, then T(tx) = t3T(z) for all x € E and all t € R.

Proof. Define @ : E x E — [0,00) by ®(z,y) = 6(||z||$ + ||y1|%) Now, apply
Theorem 3.8. Under the assumption that f(¢z) is continuous in ¢t € R for each
fixed z € E, by the same reasoning as in the proof of [28], the cubic mapping
T:E — X satisfies T(tz) = t3T(x) forallz € E and all t € R. a

Corollary 3.10. Let 6 be non-negative real number and let 5 € (3, 00). Suppose
that a mapping f : E — X satisfies (3.10) for all z,y € E. Then the mapping
[+ E — X is cubic. Moreover, if for each fized x € E the mapping t — f(tx)
from R to X is continuous, then f(tz) = t3f(x) for allt € R and all z € E.

Proof. By the same reasoning as in the proof of Corollary 3.5, we get (3.11).
By Theorem 3.8 the mapping T : E — X defined by

1= a7 ()

is cubic. Therefore we have from (3.11) that f = T. So the mapping f : E —» X
is cubic. The rest of the proof is obvious by Remark 3.4. O

Corollary 3.11. Let 6 be non-negative real number and let o € (3,00) with
a+ 1 # logz 109. Suppose that a mapping f : E — X satisfies (3.12) for all
z,y € E. Then the mapping f : E — X is cubic. Moreover, if for each fized
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z € E the mapping t — f(tz) from R to X is continuous, then f(tz) = t3f(z)
forallt € R and all x € E.

Proof. By the same reasoning as in the proof of Corollary 3.6, we get

(2) = (r35) @ 5o(25) = g fol®)

and

ne( L
020 2 1(2) = (55) hior+ 60
for all z € E and all n € Z. By Theorem 3.8 the mapping T : E — X defined
by
. nel T

T(e) = lim 27°f(55)
is cubic. Therefore we have from (3.26) that f, = T. Hence (3.21) implies that
(3.27) | fe(x)llx < M||z|E
for all z € E where M = % Let a + 1 < log; 109. Replacing = by

(3ep — 27P)7
3"z in (3.27), we get

1+ n
(3.29) 1e@)lix < (3 ) Tl

for all z € F and all integers n > 1. Letting n — oo in (3.28), we get that

fe(x) = 0 for all x € E. Similarly, we get fe(z) = 0 for all z € E when

a+1>logy 109. So f = f, = T. Therefore the mapping f : E — X is cubic.
The rest of the proof is obvious by Remark 3.4. O

Corollary 3.12. Let 8 be non-negative real number and let o = logz 109 — 1.
Suppose that a mapping f : E — X satisfies (3.12) for all z,y € E. Then there
exists a unique cubic mapping T : E — X which satisfies Eq. (1.5) and the
inequality

(3.29) 7@ - @) < 2z

for all x € E. Also, if for each fized x € X the mapping t — f(tx) from R to
X is continuous, then T(tx) = t*T'(z) for allx € E and allt € R.

Proof. In the proof of Corollary 3.11, we showed that f, =T and

fo32) = TR fl@), fo(30) = 214,(2)

for all z € E. Hence by letting y = 0 in (3. 12) we get

Me@lx < 55

for all x € E. Since f. = f — f, = f — T, then the requirement inequality
is proved. Under the assumption that f(¢z) is continuous in ¢ € R for each

% ol



STABILITY OF A CUBIC FUNCTIONAL EQUATION 837

fixed z € E, by the same reasoning as in the proof of [28], the cubic mapping
T: E — X satisfies T'(tz) = t3T(z) for all z € E and all t € R. O

Remark 3.13. If we apply Theorem 3.8 in the proof of Corollary 3.12, we know
that there exists a unique cubic mapping T : E — X satisfies Eq. (1.5) and
the inequality

30
T(x)— < ——|2ll§
(0) |r@ - 1@, < TrTErAL:
for all z € E where a = log; 109 — 1. But we have a better possible upper
bound (3.29) than that of the inequality (¢).

Corollary 3.14. Let 6, a, 3 be non-negative real numbers such that o + 3 €
(3,00). Suppose that a mapping f : E — X satisfies (3.17) for all z,y € E.
Then the mapping f : E — X is cubic.

Moreover, if for each fited z € E the mapping t v f(tx) from R to X is
continuous, then T'(tz) = t3T(z) for allt € R and all z € E.

Proof. The result follows by the same reasoning as in the proof of Corollary
3.10. O

4. Stability in quasi-Banach B-modules

In this section, let B be a unital p-Banach space with norm |.| and B; :=
{u € B:|ul=1}, and let X be a quasi left B-module with norm || - ||x and Y
be a p-Banach left B-module with norm || - |ly. A cubic mapping T': X — Y is
called B-cubic if T'(az) = a®*T(z) for all @ € B and all z € X.

Theorem 4.1. Suppose that a mapping f : X = Y satisfies

wn H3f(a:1: + 3ay) + f(3az — ay)

~150°f(a +y) - 150* f(z — y) — 800" (4}, < 9(a,v)

and ¢ : X x X = [0,00) is a mapping satisfying the conditions

= — 1 n : 1 n n
P(x) = 2_:()27n,,sop(3 2,0) <00,  lim oop(3"2,3") =0

for all a € By and all z,y € X. If f(tx) is continuous in t € R for each fived

z € X, then there exists a unique B-cubic mapping T : X = Y which satisfies
Eq. (1.5) and the inequality

x) 7@ - 1@ - 570, < 35 [6@)]

B |-

for all x € X.
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Proof. By Theorem 3.1, it follows from the inequality (4.1) for a = 1 € B;
that there exists a unique cubic mapping T : X — Y, defined by T'(z) =
limp 00 35+ f(3"x), which satisfies Eq. (1.5) and the inequality (4.2) for all
z € X. It follows by definition of 7' and (4.1) that

(4.3) 3T (az + 3ay) + T (3az — ay) = 15a*T(z + y) + 15a3T (z — y) + 80a>T (y)

for all z,y € X and all a € B;. Since T is cubic, setting y = 0 in (4.3), we get
T(az) = a®T(z) for all z € X and all a € B;. The last relation is also true
for @ = 0. Under the assumption that f(¢z) is continuous in ¢t € R for each
fixed z € X, by the same reasoning as in the proof of [28], the cubic mapping
T : X — Y satisfies T(tz) = t3T(z) for all t € R That is, T' is R-cubic.

For each element a € B(a # 0), a = |a| - 157. Since T is R-cubic and

T(az) = a®T(z) for all z € X and all a € B;, then we have
3
a a a
T(az) =T(la|- —=) = |af*T{—z) = |a]* - = - T(z) = a®T
(02) =T (jal - 11r2) = 10T (172) = laf’ - 105+ T(a) = &°T(@)
for all z € X and all a € B (a # 0). So the unique R-cubic mapping T : X = Y
is also B-cubic. This completes the proof of the theorem. O
The following theorem is an alternative result of Theorem 4.1.

Theorem 4.2. Suppose that a mapping f : X - Y satisfies
H3a3f(z +3y) +a®f(3z —y)

— 15/ (a2 + ay) — 15/ (az — ay) — 80 (ay)||_ < ¢(z,9)

and ¢ : X x X = [0,00) is a mapping satisfying the conditions

(4.4)

N — 1 L an. an
Pla) =D 5op@?(3"2,0) <00, lim —o¢p(3",3"y) = 0
n=0

for all a € By and all z,y € X. If f(tz) is continuous in t € R for each fized
z € X, then there exists a unique B-cubic mapping T : X — Y which satisfies
Eq. (1.5) and the inequality (4.2).

Theorem 4.3. Suppose that a mapping f : X — Y satisfies (4.1) and ® :
X x X = [0,00) is a mapping satisfying the conditions

3(z) == i27npq>l’(3in,0) <oco, lim 27"¢(£ Y ) —0
n=1

n—oo 3n ’ 3n

for all a € By and all 2,y € X. If f(tzx) is continuous in t € R for each fized
z € X, then there erists a unique B-cubic mapping T : X — Y which satisfies
Eq. (1.5) and the inequality

(45) I7(@) - @)l < 5 [8a)]”
for all x € X.
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Proof. By Theorem 3.8, it follows from the inequality (4.1) for a = 1 € By
that there exists a unique cubic mapping T : X — Y, defined by T(z) =
lim, o 27" f(5%), which satisfies Eq. (1.5) and the inequality (4.5) for all
r € X. It follows by definition of T and (4.1) that T satisfies (4.3) for all
z,y € X and all a € By. Since T is cubic, setting y = 0 in (4.3), we get
T(az) = a®T(x) for all z € X and all @ € By. The last relation is also true
for @ = 0. Under the assumption that f(tz) is continuous in ¢ € R for each
fixed z € X, by the same reasoning as in the proof of [28], the cubic mapping
T :X — Y satisfies T'(tz) = t3T(x) for all t € R. That is, T is R-cubic.

The rest of the proof is similar to the proof of Theorem 4.1. d

The following theorem is an alternative result of Theorem 4.3.
Theorem 4.4. Suppose that o mapping f : X — Y satisfies (4.4) and ® :
X'x X —[0,00) is a mapping satisfying the conditions
B() = S o7mrar( L e Y AT
(@) =3 2779 (2,0) <oo,  lim 27 2 (57 55) =0

for all a € By and all z,y € X. If f(tx) is continuous in t € R for each fived
x € X, then there exists a unique B-cubic mapping T : X — Y which satisfies
Eq. (1.5) and the inequality (4.5).

n=1
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