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ON THE STABILITY OF FUNCTIONAL EQUATIONS
IN n-VARIABLES AND ITS APPLICATIONS

GwaNG Huir Kim

ABSTRACT. In this paper we investigate a generalization of the
Hyers-Ulam-Rassias stability for a functional equation of the form
Ffle(X)) = ¢(X)f(X), where X lie in n-variables. As a conse-
quence, we obtain a stability result in the sense of Hyers, Ulam,
Rassias, and Gavruta for many other equations such as the gamma,
beta, Schréder, iterative, and G-function type’s equations.

1. Infroduction

In 1940, the stability problem raised by S. M. Ulam [27] was solved
in the case of the additive mapping by D. H. Hyers [6]. The result of
Hyers has been generalized to the unbounded case by Bourgin (3] and
Th. M. Rassias [18]. The result of latter also has been generalized by P.
Gavruta [4], R. Ger [5], and others(see Refs.).

The stability type in which we are investigated is the sense of Gavruta
for the case of the suitable function as follows: If for an approximate
solution f of the equation Ey(h) = Es(h), i.e., for a function f such
that |E1(f) — Ea(f)| < ¢ holds with a given function ¢ there exists a
function g such that Ei(g) = E2(g) and |g(z) — f(z)] < ®(z) for some
fixed function .

The functional equation in which we are interested in this article is
derived from the gamma functional equation f(z + 1) = zf(z), which
was considered by S.-M.Jung([11, 12, 13]). This equation generalizes the
gamma type functional equation f(z +p) = ¢(z)f(z) and the beta type
functional equation f(z + p,y + p) = (z,y)f(z,y) by author ({10, 14,
15, 16, 17]).
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In this paper, we will investigate a generalization of the Hyers-Ulam-
Rassias stability in the sense of Gévruta for the functional equation

(1.1) Flp(X)) = ¢(X) £ (X),

where @, ¢ are given functions, while f is the unknown function and X
depends upon n-variables. Namely, the aim of this paper is the extension
to the domain of n-variables and applications to many other functional
equations as gamma, G, Schroélder, iterative, and beta types functional
equations.

In section 2, we study the stability in the sense of Gavruta for the
functional equations (1.1).

In section 2’, we consider the special case of section 2 with ¢(X) =
X+ P

In section 3, our results shown in sections 2, 2’ are applied to the
gamma, GG, Schrolder, iterative and beta types functional equations and
some examples suitably restricted to a domain in one or two variables.

Throughout this paper, let B be a Banach space over the field K,
where K will be either the field R of real numbers or the field C of
complex numbers. Each positive real number § is fixed, and the constant
¢ > 0. R4 denotes the set of all nonnegative real numbers. Given the
nonempty set S and the function ¢ : S — §", we put po(X) := X and
en(X) = p(pn_1(X)) for all positive integers n and all points X € S™.
The functions ¢ : S™ — K\{0} and € : S™ — R, are defined.

2. Generalization of Hyers-Ulam-Rassias stability of Eq.(1.1)

Let ¢, ¢ and e be given functions such that

9 c(pn(X)) .
2.1 w(X):= , VX e S™.
e A iy o ©

THEOREM 1. Let the functions @, ¢, ¢ satisfy the condition (2.1). If
a function f : S™ — B satisfies the inequality

(2.2) IF(p(X)) = o(X)fF(X)]] < e(X) VX e ST,

then there exists an unique solution g : S™ — B of the equation (1.1)
with

(2.3) llg(X) = F(XOII < w(X).
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Proor. For any X € S™ and for every positive integer n, let wy, :
S" — Ry and g, : S™ — B be the functions defined by

n—1
e £(pr(X)) R ((69)
) §H§:0|¢<¢j<x>>l wnd )= o (X0)

for all X € S™, respectively.
By (2.2), it follows that

P(X) lo(X)|

Substituting X by ¢, (X) in this inequality, and then dividing both sides
of the obtained inequality by H;L:_Ol lp(; (X)), we get

e(pn(X))
I1i—o lo(e; (X))

—f(X)H < forall X e S™

(2.4) gn+1(X) = gn(X)]| =

By induction on n we prove that

(2.5) gn (X) — F(X)]] < wn(X)

for all X € §™, and for all positive integers n. For the case n = 1, the
inequality (2.5) is an immediate consequence of (2.2).

Assume that the inequality (2.5) holds true for some n. Then we
obtain the inequality for n 4+ 1. This is an immediate consequence of

llgn+1(X) = FXI < Hlgn41(X) = gn (X)) + [1gn(X) = F(X)]|
e(en(X))
~ =0 (s (X))
= wp41(X).

We claim that {gn(X)} is a Cauchy sequence. Indeed, by (2.4) and
(2.1), we have for n > m that

+ wp(X)

190(X) — g (XN < 5 Nlgbss (X) — g6 (X))
k=m

n—1

—  e(ee(X))

< k
k:;z =0 [9(p5 (X))
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as m — oo.
Hence, we can define a function g : S™ — B by

(2.6) g(X) = lim g¢,(X).

n—oo

From the definition of g, we have gn(¢(X)) = #(X)gn+1(X) and
therefore the function g satisfies (1.1).
We show from (2.5) that g satisfies the inequality (2.3) as follows:

llg(X) = F(XOIl = lim_{]gn(X) = f(X)|
Snli_)rréown(X)
= w(X) VX e ™.

If h : S® — B is another such function, which satisfies (1.1) and
(2.3), then we have

lg(X) — R(X)]]

= lteaC) = enCONN- T ey

< 2wn ‘Pn

H |¢(<PJ (X))

:2(§: e(Pn+k(X)) )H

k= OH] 0|¢(90n+1(

_ oy k(X))
g:; TT5—o l6(0;(X))]

for all X € S™ and all positive integers n, which tends to zero as n — oo,
since w(X) is bounded. This implies the uniqueness of g. O

Setting €(X) = ¢ in Theorem 1, we have the Hyers-Ulam stability of
equation (1.1).
Let the functions ¢, ¢ satisfy

oo k

1 i
(2.7) w(X) = ;gm <oo VX esm
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COROLLARY 1. Let ¢, ¢ satisfy condition (2.7). If a function f :
S™ -—— B satisfies the inequality

(2.8) 1f (e(X)) = o(X)F(X)| < 6

for all X € 8™, then there exists an unique solution g : S — B of the
equation (1.1) with

(2.9) llg(X) = f(X)I] < u(X).

2’. Stability in the case ¢(X) = X + P of the Eq.(1.1)

As a special case of section 2, we consider that ¢(X) = X + P,
S = (0,00), and B = R. Then, we can obtain the same results for the
functional equation:

(1.17) f(X + P) = ¢(X)f(X),

where X = (1,29, -+ ,2n), P = (1,02, ,pn) € (0,00)", and each
positive real number x; is a variable, each positive real number p; is
fixed, and n is a natural number. The statement X > 0 means that
each component z; of X lies in the interval (0,00), and the statement
X > Ny means that x; > ng for each component x; of X and for a fixed
natural number ng.

All results shown in section 2 are replaced with the analogous results
in the form p(X) =X + P.

Let the functions ¢ and e satisfy the inequalities

o0

5 1/ X e e(X +kP)
e e kzz()nfzolas(XJrjP)l
and
. o k 1
(2.7) u(X):];g)m<oo ¥X >0

THEOREM 1'. Let ¢,e satisfy condition (2.1"). If a function f :
(0,00)" — R satisfies the inequality

lF(X+P) = o(X)f(X)| <e(X) VX >N,
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then there exists an unique solution ¢ : (0,00)" — R of the equation
(1.1) with
lg(X) - f(X)] <W'(X) VX > N

PROOF. Setting § = (0,00),B = R,p(X) = X + P in Theorem
1, then the claimed result of this theorem is satisfied except for the
condition that replaces X € S™ by X > Ny. For this, we define the new
function go : (ng,00)® — R by

go(X) := lim g,(X)

n—o0

in substituting g defined in (2.6) for go.
Now, we extend the function go to the domain (0, 00)". We define for
each 0 < X < Ny,

go(X + kP)
1524 6(X +nP)’

9(X) =

where k is the smallest natural number satisfying the inequalities z; +
kp; > ng for each 1.

Then, g(X + P) = ¢(X)g(X) for all X > 0 and ¢g(X) = go(X) for
all X > Ny. Also the inequality

l9(X) = fF(X)] <'(X)

holds for all X > 0. O
COROLLARY 1. Let ¢ satisfies condition (2.7"). If a function f :
(0,00)™ — R satisfies the inequality
[f(X+P)—¢(X)f(X)[ <6, VX >N,

then there exists an unique solution g : (0,00)" — R of the equation
(1.1) with
9(X) = F(X)| S 60/(X), VX > No.
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3. Applications to the gamma type, G-function, Schréder,
iterative and the beta type functions

The results shown in the sections 2, 2’ can be applied to the well
known stability results for the gamma, G, beta, Schroder, iterative func-
tional equations, and also to certain other forms. It suffices to show how
to bring the equation (1.1) into the concrete forms of those functional
equations.

(1) BETA TYPE FUNCTIONAL EQUATIONS

We restrict the functional equation (1.1) in the case of a double vari-
able. Then, we can obtain the same results for the beta type functional
equation, as follows :

(3.1) flz+py+q) =z, y)f(z,y)
(32)  flatly+)Tt= (Hy)(f;yﬂ)f(x,y)‘l

which provide some special cases of the equation (1.1).

The beta function B(z,y) fo t*=1(1 — ¢)¥~1dt is a solution of the
beta functional equation f(x + 1,y + 1) mmf( x), which is
closely related to the gamma function I'(z fo e~ t*~1dt. The rela-

tionship between them is given by B(z, y) = FF((?_I;%) = B(y, ).

In the case of 2-variables, the following Corollary 2 follow from The-
orems 1 or Theorems 1’ with S = (0,00), B = R.

In Theorem 1, the condition (2.1) with ¢(z,y) = (x+p,y+¢q) applies

o0
(3.3)  wg(z,y) = Z k&(x + kp,y-l— kq)‘ < 0 v,y > 0.
=0 =0 |0(x + D,y + jg)|

COROLLARY 2. [10] Let ¢,e satisfy condition (3.3). If a function
f:(0,00) x (0,00) — R satisfies the inequality

If(x+p,y+q) — oz, y)f(z,y) <elx,y)  Vz,y > ne,

then there exists an unique solution g : (0,00) x (0,00) — R of the
equation (3.1) with

‘g(l'vy)_f(x,y)’ Swﬂ(a;?y) \V'l',y>no.



328 Gwang Hui Kim

The following Corollary 3 follow from the Corollary 2 with ¢(z,y) =

M%rﬂl—) and p = ¢ = 1. The condition (3.3) is replaced by
(3.4)
o0
we, (z,y) =Y elx+ky+k)
k=0
k . .
(z+7) (y+4)
X ; ; ; ; <00
jl;lo (C+)+ @+ +)+y+5)+1)

for all z,y > 0.
COROLLARY 3. [15] Let a function e satisfies condition (3.4). If the

function f : (0,00) x (0,00) — R satisfies the inequality

(z+y)(z+y+1)
Ty

‘f(-T‘J!‘]-,y‘i‘]-)_l" f(l',y)_ll S €($,y) vay > ng,

then there exists an unique reciprocal of the beta functional equation
g : (0,00) x (0,00) — R of the equation (3.2) with

lg(z,y) ™" = f(@, )7 Swp (z,y)  Va,y > no.

(2) GAMMA AND OTHER TYPE FUNCTIONAL EQUATIONS

Let restrict the functional equation (1.1) for the case of a single vari-
able. Then, we can consider similar results for the gamma, G. Schroder,
iterative, other types functional equations as follows :

(3.5) flo()) = ¢(x) f(z)
(3.6) fle(z)) = zf(z)
(3.7) fle(z)) = cf(z), c: constant

(3.8) f(p(2)) = (2 + ) f(z)
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(3.9) fle(z)) = p(z)f ()
(3.10) fle(x)) = f(x)®
(3.11) f(f(@) = f(=)*
(3.12) flz+p) = o(z)f(z)
(3.13) fr+1) = (@ + 1) f()
(3.14) flz+1) =zf(2),

which are special cases of the equation (1.1) by various applying of the
functions ¢, ¢.

The gamma function given by I'(x) = fooo e~tt*~1dt is a solution of
the gamma functional equation (3.14), also the functional equation (3.7)
is called the Schroder functional equation.

REMARK 2. The Hyers-Ulam stability and the generalized Hyers-
Ulam-Rassias stability for all of the above functional equations follow
immediately from Theorems 1, 2' with S = (0,00),B = Ror K,p =
1,¢(z) = z,pj(x) = = + j,e(x) = 0 by restricting to a single variable.
Since the Hyers-Ulam stability and the generalized Hyers-Ulam-Rassias
stability of the equations (3.12), (3.13), (3.14) are studied in the papers
([1, 10, 11, 12, 13, 14, 17, 26)).

The equation (3.6) can be considered as the generalized form of
Schroder functional equation (3.7). In the case ¢ > 1, Trif proved the
Hyers-Ulam stability of the equation (3.7).

Restricting the condition (2.1) to a single variable, we get for all x €

S

; , ad e(px(z))
2.1 wiz) =
(2.1 )= 2 T oty @)

3.15 z) = o _cler(@)
(319 (@)= 3 FE o <



330 Gwang Hui Kim

ox<

_ N\ Elpr(a)) R
(3.16) welz) = kZO — gt < ¢ : positive constant.
(3.17) wr(z) = Z £@ + kp) < 0o0.

k=0 H?:o |¢(I + ]p)l

COROLLARY 6. [26] Let ¢, ¢, ¢ satisty condition (2.1'). If a function
f : S — B satisfies the inequality

£ (p(2)) — ¢(2) f(2)]] < e(=),

then there exists an unique solution g : § — B of the functional
equation (3.5) with
llg(z) — f(2)]] < W'(2).

COROLLARY 7. Let a function f : S — B satisfies the inequality

f(p(2)) — ¢(z) f ()] <6,

where the functions ¢, ¢ satisfy p5(z) == > ey i < oo for
2

1
o 005 (@)
all x in S.
Then, there exists an unique solution g : S — B of the functional

equation (3.5) with

llg(z) = f2)I| < Sps(z).

COROLLARY 8. Let ¢,¢ satisfy condition (3.15). If a function f :
S — B satisfies the inequality

1f(e(x)) — zf(@)]] < e(z),

then there exists an unique solution g : S — B of the equation (3.6)
with
llg(z) = f(@)] < wy(x).
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COROLLARY 9. Let ¢ satisfies condition ||¢;(z)|| > |[¢(z)|| > 1 for
all j. If a function f : S — B satisfies the inequality

1f (o(z)) — 2f(2)]] <6,

then there exists an unique solution g : S — B of the equation (3.6)

. dle(e)]
o(x
lg(z) = f(2)]] € T~
z(|le(z)l] — 1)
In particular, if ¢ satisfles the inequality ||¢;(z)|| > ||lz|| > 1, then
there exists an unique solution g : S — B of the generalized Schroder
functional equation (3.6) satisfying

1)
llg(z) — f(2)|l < =1

CoOROLLARY 10. Let p,€ satisfy condition (3.16). If a function f :
S — B satisfies the inequality

17 (o(2)) — cf (2)]] < e(z),

then there exists the unique Schréder function g : S — B satisfying
(3.7) with

lg(z) = f(@)]] < we(z).

COROLLARY 11. [26] Let ¢ > 1. If a function f : S — B satisfies
the inequality

£ (p(2)) — cf(x)l] <6,

then there exists the unique Schréder function g : S — B satisfying
(3.7) with
)

c—1

llg(z) — f(2)ll <

COROLLARY 12. If a function f : S — B satisfies the inequality

£ (@) = (c + @) f(2)]] < e(=),

where the functions ¢ satisfy pc(x) == 3 peo —H—k% < oo for all
j=01¥j

xin S.
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then there exists the unique function g : S — B of the equation
(3.8) with
llg(z) — f(@)|| < pe(z).

The following corollary will be using in (3) G-function and (4) Ex-
amples.

COROLLARY 13. [14] Let p, ¢, € satisfy condition (3.17). If a function
f 8§ — B satisfies the inequality

If(z +p) — ¢(z) f(2)]| < e(z),

then there exists an unique solution ¢ : S — B of the functional
equation (3.12) with

llg(z) — f(@)I| < wr(z).

The condition (3.15) with ¢;(z) = = + j can be represented by

3.18 Wy, () = 3 s+ k) 0, Vz > 0.
9 O e+ G0 i
and

(3.19) wy(z) == i _cletk) < 0o, Vz > 0.

% )
k=0 szo |z + j

COROLLARY 14. Let ¢ satisfy condition (3.18). If a function f :
(0,00) — K satisfies the inequality

1f(@+1) = (z+ 1)f(2)] < ea),

then there exists an unique solution g : (0,00) — K of the equation
(3.13) with
l9(z) — f(@)| < wy, (2).



Stability of functional equations in n-variables and its applications 333

The following Corollary 15 is the Hyers-Ulam-Rassias stability of the
gamma functional equation (3.14), and if we takes e(x) = 4, then the

approximate difference of the Hyers-Ulam stability is %‘S.

COROLLARY 15. [10, 12, 13, 14] Let ¢ satisfy condition (3.19). If a
function f : (0,00) — K satisfies the inequality

|f(z+1) —af(z)] <e(z),

then there exists an unique solution g : (0,00) — K of the gamma
functional equation (3.14) with

lg(z) — f(z)| < wy(2).

COROLLARY 16. If a function f : § — B satisfies the inequality

1 (p(2)) = w(x) ()] < e(=),
ions o satis — 0 (e ()
where the functions ¢ satisfy w,(z) == o o lor e @)

x in S, then there exists the unique function g : S — B of the equation

(3.9) with
lg(z) — f(@)|| < we(2).

< oo for all

COROLLARY 17. If a function f : S — B satisfies the inequality
1/ (p(2)) — f@)*]] < (),

where the functions ¢ satisfy wg(z) :== > 7o, W‘—s(‘ffk(%?zx_))l < oo for all
=0 J

x in S, then there exists an unique function g : S — B of the equation
(3.10) with
lg(z) = f(2)l] < ws(z).

Let consider the same case f = ¢ = ¢. Namely f has the iterative
properties such as f*(z) := f(f* (z)) and f%(z) := z.

COROLLARY 18. If a function f : B — B satisfies the inequality

17%(2) = f(2)°]] < e(),
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z))
where the functions ¢ satisfy wi(z) := > po. o ﬁ’“_egf—f(Jr—lm)—l < oo for all

x in S, then there exists an unique function g : S —— B of the equation

(3.11) with
llg(z) — f@)ll < wa(z).

(3) G-FUNCTIONAL EQUATION
The G-function introduced by E.W. Barnes [2]

S _sGon o) T 2—1\F L o2
Gz)=(m) T e a7 [[[(1+ =) 7]

k=1

does satisfy the equation G(z + 1) = I'(z)G(z) and I'(1) = G(1) = 1,
where 'y is the Euler-Mascheroni’s constant defined by v = lim,_,
(ko1 3 —logn) 2 0.577215664 - -

The properties and values of G- functlon depend on those of the gamma
function. Since the double gamma function I'; is defined by the recip-
rocal of the G-function(see [2]), I's(z) = 1/G(z), and its functional
equation is I'z(z + 1) = I'y(z)/T'(x). Therefore the stability problem
for the G-function is equivalent to the stability for the reciprocal of the
double gamma, function.

Putting ¢(z) = I'(z) and p = 1 in equation (3.12), we obtain

(3.20) flz+p) =T(2)f(z),

(3.21) flz+1) =T(z)f(2).

Since G-function satisfies the equation (3.21), which is called the G-
functional equation.
The condition (2.1’) in a single variable is represented by

3.22 wg. (z) = 3 e(z + kp) 00
22 )= L Ee 4]

3.23 walz) = 3 E(m+k)
(329 o) gomzolmw
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COROLLARY 19. Let the functions T', ¢ satisfy condition (3.22). If a
function f : (0,00) — R satisfies the inequality

[f(z+p) —T(2)f(z)] <e(z) V> no,

then there exists an unique solution g : (0,00) — R of the equation
(3.20) with
lg(z) ~ f(z)| Swg,(xz) Vx> ng.

COROLLARY 20. [16] Let the functions T, e satisfy condition (3.23).
If a function f : (0,00) — R satisfies the inequality
[fz+1) -T(@)f(z)| <e(z) V> no,
then there exists an unique G-function g : (0,00) — R satisfying the
equation (3.21) with

lg(z) — f(@)] L wg(z) Ya > ng.

REMARK. The Hyers-Ulam stability of all equations (3.1), (3.2),
(3.5)~(3.14), (3.20), (3.21) in Section 3 follows immediately from each
Corollaries with e(x) = 6.

(4) EXAMPLES
The results of Sections 2, 3 may be applied to the following examples.
EXAMPLE 1. Set ¢(X) = 21 *z3 * - - - * z,, in Corollary 1’, where * is

an operation on the set S. If a function f : (0,00)" — R satisfies the
inequality

(X +P)— (z1xzox--xzn)f(X) <68 VX > Ny,

then there exists an unique solution g : (0,00)" — R of the equation
f(X+ P)=(x1 %0 % *xzy,) f(X) with

9(X) — f(X)]
. . K s
( UJ*(I) lf CL)*(-’I;) - ZZOZO Hj=0 |(.z‘1+jp1)*...*(mn+jp")| < 0
m lf $1*~~-*xn> 1
de

if prepax---xpy,>1

T RTL Q% e%kTy

I

515—1712:10(/;7 if P=(1,---,1), Zy % - *Tp =21 Ty

é o] 1 . .
T ko Gy i P= (1,000, 1),
\ xl*---*xn:l‘l+...+xn_
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From Corollary 13, we have the following Ex 2 as a corollary, the
other examples is derived from it.

EXAMPLE 2.(COROLLARY). If a function f : (0,00) — R satisfies
the inequality
|f(z+1) —g(x)f(z)| <6 Vo >mn,

where ¢ is a function such that

e o]

1
3.24 glT) == . 00,
529 el kZZOH;LO ot

then there exists an unique solution g : (0,00) — R of the equation
(3.12) with
l9(z) — f()] < g ).

The definition of the function ¢ in the following examples satisfies the
condition (3.24). Thus the functional equation f(z + 1) = ¢(z)f(z) in
following each case has the Hyers-Ulam stability.

EXAMPLE 3. ¢(x) = ¢ > 1, where c is constant.
EXAMPLE 4. ¢(z) = (1 + 1)®. Note that lims ,oo(1+ 1)* =€ > 1.
EXAMPLE 5. ¢(x) =2, forz>1, neN.

EXAMPLE 6. ¢(x) = arctan(z), since limg_, arctan(z) = 5.
EXAMPLE 7. ¢(x) = arcsin(z) for z > 1, since lim,_, o arcsin(z) = 3.

Similarly, we can also consider sinh(z), cosh(z), log(x) with a suitable
domain for each function.

EXAMPLE 8. In Hyers-Ulam stability of Corollary 12, putting ¢(x)
z+1, and ¢,z > 0, we obtain the approximate difference | f(z) — g()|

% for the functional equation f(z + 1) = (¢ + z) f(x).

<
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