• Title/Summary/Keyword: Hydrogen ion sensing

Search Result 15, Processing Time 0.023 seconds

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung;Hwang, Deok Rok;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.76-80
    • /
    • 2019
  • The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.

Hydrogen and Alkali Ion Sensing Properties of Ion Implanted Silicon Nitride Thin Film

  • Park, Gu-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.231-236
    • /
    • 2008
  • B, P, and Cs ions were implanted with various parameters into silicon nitride layers prepared by LPCVD. In order to get the maximum impurity concentration at the silicon nitride surface, a high temperature oxide (HTO) buffer layers was deposited prior to the implantation. Alkali ion and pH sensing properties of the layers were investigated with an electrolyte-insulator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. The ion sensing properties of implanted silicon nitrides were compared to those of as-deposited silicon nitride. Band Cs co-implanted silicon nitrides showed a pronounced difference in pH and alkali ion sensing properties compared to those of as-deposited silicon nitride. B or P implanted silicon nitrides in contrast showed similar ion sensitivities like those of as-deposited silicon nitride.

ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane

  • Chung, Mi-Kyung;Kim, Seong-Wan;Lee, Sang-Sik;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • This paper describes the development of a glucose biosensor based on ion sensitive field effect transistor(ISFET) with a palladium(Pd) modified ion sensing membrane. By adopting Pd as a hydrogen sensitive layer and integrating a screen-printed reference electrode, the sensitivity and stability were considerably improved due to the high permeability and selectivity of the Pd hydrogen selective membrane. This paper suggests a new approach for realizing portable and highly sensitive glucose sensors for diagnosing and treating diabetes mellitus.

Development of a Micro pH-ISFET Probe for in vivo Measurements of the Ion Concentration in Blood (생체내의 혈중이온농도 예측을 위한 마이크로 pH-ISFET프로브의 개발)

  • Sohn, Byung-Ki;Lee, Jong Hyun;Lee, Kwang Man
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 1986
  • A micro pH-ISFET probe, which can be applied to the in vivo measurements of the hydrogen ion concentration in blood, has been developed, and a measuring system equiped with this probe also developed. The pH-ISFET has been fatricated by employing the techniques of integrated circuit fabrication. Two kinds of micro electrode formed around the sensing gate during the wafer process, and the other is a capillary type of Ag/AfCl/sat. KCI reduced in size. This capillary electrode has shown its good performance characteristics so far in the application with ISFET as well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and the capillary electrode were built together into a needle tip having 1 mm inner diameter. The chip size of a twin pH-ISFET is 0.8 mmx1.4 mm, the material of the sensing gate membrane is Si3N4, and the sensitivity of the developed probe is about 52mV/pH.

  • PDF

pH Sensing Properties of ISFETs with LPCVD Silicon Nitride Sensitive-Gate

  • Shin, Paik-Kyun;Thomas Mikolajick;Heiner Ryssel
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.82-87
    • /
    • 1997
  • Ion-Sensitive Field-Effect Transistors(ISFETs) with LPCVD silicon nitride as a sensitive gate were fabricated on the basis of a CMOS process. The silicon nitride was deposited directly on a poly silicon gate-electrode. Using a specially designed measuring cell, the hydrogen ions sensing properties of the ISFET in liquid could be investigated without any bonding or encapsulation. At first, th sensitivity was estimated by simualtions according to the site-binding theory and the experimental results were analysed and compared with simulated results. The measured dta were in good agreement with the simulated results. The silicon nitride based ISFET has good linearity evaluated from correlation factor ($\geq$0.9998) and a mean pH-sensitivity of 56.8mV/pH. The maximum hysteresis width between forward(pH=3\longrightarrowpH=11)- and backward(pH=11\longrightarrowpH=3) titration was 16.7mV at pH=6.54.

  • PDF

Voltammetric Studies of Diazocalix[4]crown-6 for Metal Ion Sensing

  • Dong, Yun-Yan;Kim, Tae-Hyun;Lee, Chang-Seuk;Kim, Hyun-Jung;Lee, Jae-Hong;Lee, Joung-Hae;Kim, Ha-Suck;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3549-3552
    • /
    • 2010
  • The complex formation between diazocalix[4]dipropyl (1) and diazocalix[4]crown-6 ether (2) with alkali, alkaline earth and transition metal ions was investigated by voltammetry. Electrochemical properties of compounds 1 and 2 and their selectivity toward metal ions were evaluated in $CH_3CN$ solution by comparison of voltammetric behaviors of two phenols in each compound. Compounds 1 and 2 showed almost same voltammetric behavior which is two irreversible oxidation peaks caused by intramolecular hydrogen bonding between two phenols in 1 and 2. While, however, upon interacting with various metal ions, 1 with two propyl ether groups showed no significant changes in voltammetry, 2 with crown ether group caused significant voltammetric changes upon the addition of $Ba^{2+}$ to 2. Their behavior is closely related to the complex formation by entrapment of metal ion into crown ether cavity, and ion-dipole interaction between metal ion and two phenolic groups in calix[4]crown-6.

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

Anion Sensing Properties of New Colorimetric Chemosensors Based on Thiourea and Urea Moieties

  • Kim, Dong-Wan;Kim, Jung-Hwan;Hwang, Jae-Young;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1159-1164
    • /
    • 2012
  • A new colorimetric sensors containing thiourea (1-(4-nitrophenyl)-3-quinolin-6-ylthiourea; 1) and urea(1-(4-nitrophenyl)-3-quinolin-6-ylurea; 2) moieties for fluoride were designed and synthesized. These simple receptors were characterized their stoichiometry, and investigates the mechanism of their selectivity as anion receptors. The addition of tetrabutylammonium fluoride salts to the solution of receptors caused a dramatically and clearly observable color changes from colorless to yellow. To examine their application as anion receptors by UV-vis and $^1H$ NMR spectroscopy results revealed their higher selectivity for fluoride ion than other anions. The receptors and fluoride ion formed a 1:1 stoichiometry complex through strong hydrogen bonding interactions in the first step, followed by a process of deprotonation in presence of an excess of $F^-$ in DMSO solvent.

Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH (NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성)

  • ;;;Lee, Si-Hong;Lee, Sang-Uk;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF

Extension of the Site Binding Model for Ion Sensing Mechanism of ISFET and Its Application to the Hydrogen Ion Sensing $Si_3N_4$ Membrane (ISFET 이온감지기구의 Site Binding 모형 확장과 그 $Si_3N_4$ 수소이온 감지막에의 적용)

  • Seo, Hwa-Il;Kwon, Dae-Hyuk;Lee, Jong-Hyun;Sohn, Byung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1358-1366
    • /
    • 1988
  • The dual dielectric films have been grown on single-crystalline silicon substrates with the thickness ranging from 125A to 180A at various gas and temperature conditions by using rapid thermal process that included independent nitridation step. The film characteristics and their dependence on the contents of the hydrochloric gas and the processing time have been studied. By the addition of the hydrochloric gas, the initial oxide thickness was significantly changed, but after sequential nitridation processes the thickness of the films was nevertheless a little bit varied within 10A. All the samples of the dual dielectric films show the increased breakdown voltages in proportion to the additive contents of the hydrochloric gas and also show the higher breakdown strengths than the thermal oxide and nitrided oxide films grown by the conventional furnance process or the rapid thermal nitridation process that was composed of the dependent nitridation cycles.

  • PDF