DOI QR코드

DOI QR Code

Anion Sensing Properties of New Colorimetric Chemosensors Based on Thiourea and Urea Moieties

  • Kim, Dong-Wan (Department of Chemistry (BK21) and Research Institute Science, Gyeongsang National University) ;
  • Kim, Jung-Hwan (Department of Chemistry (BK21) and Research Institute Science, Gyeongsang National University) ;
  • Hwang, Jae-Young (Department of Chemistry (BK21) and Research Institute Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Jae-Sang (Department of Chemistry (BK21) and Research Institute Science, Gyeongsang National University)
  • Received : 2011.11.23
  • Accepted : 2011.12.26
  • Published : 2012.04.20

Abstract

A new colorimetric sensors containing thiourea (1-(4-nitrophenyl)-3-quinolin-6-ylthiourea; 1) and urea(1-(4-nitrophenyl)-3-quinolin-6-ylurea; 2) moieties for fluoride were designed and synthesized. These simple receptors were characterized their stoichiometry, and investigates the mechanism of their selectivity as anion receptors. The addition of tetrabutylammonium fluoride salts to the solution of receptors caused a dramatically and clearly observable color changes from colorless to yellow. To examine their application as anion receptors by UV-vis and $^1H$ NMR spectroscopy results revealed their higher selectivity for fluoride ion than other anions. The receptors and fluoride ion formed a 1:1 stoichiometry complex through strong hydrogen bonding interactions in the first step, followed by a process of deprotonation in presence of an excess of $F^-$ in DMSO solvent.

Keywords

References

  1. Bianchi, E.; Bowman-James, K.; García-Espana, E. Supramolecular Chemistry of Anions; Wiley-VCH: New York, 1997.
  2. Linn, M. M.; Poncio, D. C.; Machado, V. G. Tetrahedron Lett. 2007, 48, 4547. https://doi.org/10.1016/j.tetlet.2007.04.141
  3. Boiocchi, M.; Boca, L. D.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507. https://doi.org/10.1021/ja045936c
  4. Bell, T. W.; Hext, N. M. Chem. Soc. Rev. 2004, 33, 589.
  5. Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Org. Lett. 2004, 6, 3445. https://doi.org/10.1021/ol048829w
  6. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  7. Kim, S. Y.; Hong, J. I. Org. Lett. 2007, 9, 3109. https://doi.org/10.1021/ol0711873
  8. Xu, Z. C.; Kim, S.; Kim, H. N.; Han, S. J.; Lee, C.; Kim, J. S.; Qian, X. H.; Yoon, J. Tetrahedron Lett. 2007, 48, 9151. https://doi.org/10.1016/j.tetlet.2007.10.109
  9. Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides; Plenum Press: New York, 1991.
  10. Kleerekoper, M. Endocrinol. Metab. Clin. North Am. 1998, 27, 441. https://doi.org/10.1016/S0889-8529(05)70015-3
  11. Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 1993, 32, 900. https://doi.org/10.1002/anie.199309001
  12. Nishizawa, S.; Bühlmann, P.; Iwao, M.; Umezawa, Y. Tetrahedron Lett. 1995, 36, 6483. https://doi.org/10.1016/0040-4039(95)01296-T
  13. Anzenbacher, P.; Nishiyabu, R.; Palacios, M. A. Coord. Chem. Rev. 2006, 250, 2929. https://doi.org/10.1016/j.ccr.2006.09.001
  14. Nishiyabu, R.; Palacios, M. A.; Dehaen, W.; Anzenbacher, P. J. J. Am. Chem. Soc. 2006, 128, 11496. https://doi.org/10.1021/ja0622150
  15. Fan, E.; Van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am. Chem. Soc. 1993, 115, 369. https://doi.org/10.1021/ja00054a066
  16. Sessler, J. L.; Cyr, M. J.; Lynch, V.; McGhee, E.; Ibers, J. A. J. Am. Chem. Soc. 1990, 112, 2810. https://doi.org/10.1021/ja00163a059
  17. Smith, P. J.; Reddington, M. V.; Wilcox, C. S. Tetrahedron Lett. 1992, 33, 6085. https://doi.org/10.1016/S0040-4039(00)60012-6
  18. Park, J. J.; Kim, Y. H.; Kim, C.; Kang, J. Tetrahedron Lett. 2011, 52, 2759. https://doi.org/10.1016/j.tetlet.2011.03.092
  19. Kang, J.; Lee, J. H.; Kim, Y. H.; Lee, S. L.; Kim, E. Y.; Lee, H. G.; Kim, C. J. Incl. Phenom. Macrocycl. Chem. 2011, 70, 29. https://doi.org/10.1007/s10847-010-9853-x
  20. Kang, J.; Jang, S. P.; Kim, Y. H.; Lee, J. H.; Park, E. B.; Lee, H. G.; Kim, J. H.; Kim, Y.; Kim, S. J.; Kim, C. Tetrahedron Lett. 2010, 52, 6658.
  21. Comes, M.; Rodriguez-Lopez, G.; Marcos, M. D.; Martínez- Manez, R.; Sancenon, F.; Soto, J.; Villaescusa, L. A.; Amoros, P.; Beltran, D. Angew. Chem., Int. Ed. 2005, 44, 2918. https://doi.org/10.1002/anie.200461511
  22. Shao, J.; Lin, H.; Lin, H. K. Talanta 2008, 75, 1015. https://doi.org/10.1016/j.talanta.2007.12.041
  23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian Inc.: Pittsburgh PA, 1998.
  24. Jansen, H. B.; Ros, P. Chem. Phys. Lett. 1969, 3, 140. https://doi.org/10.1016/0009-2614(69)80118-1
  25. Zhang, X.; Guo, L.; Wu, F. Y.; Jiang, Y. B. Org. Lett. 2003, 5, 2667. https://doi.org/10.1021/ol034846u
  26. Liu, S. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Qin, H. J.; Meng, L. Z.; Hu, L. Org. Biomol. Chem. 2004, 2, 1582. https://doi.org/10.1039/b400140k
  27. Conners, K. A. Binding Constants; Wiley: New York, 1987.
  28. Jose, D. A.; Kumar, D. K.; Kar, P.; Verma, S.; Ghosh, A.; Ganguly, B.; Ghosh, H. N.; Das, A. Tetrahedron 2007, 63, 12007. https://doi.org/10.1016/j.tet.2007.09.008
  29. Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 39, 343. https://doi.org/10.1021/ar050195l
  30. Jose, D. A.; Singh, A.; Das, A.; Ganguly, B. Tetrahedron Lett. 2007, 48, 3695. https://doi.org/10.1016/j.tetlet.2007.03.120

Cited by

  1. Response vol.135, pp.16, 2013, https://doi.org/10.1021/ja4019786
  2. Stimulus-Responsive Azobenzene Supramolecules: Fibers, Gels, and Hollow Spheres vol.29, pp.19, 2013, https://doi.org/10.1021/la400159m
  3. Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection vol.114, pp.10, 2014, https://doi.org/10.1021/cr400352m
  4. Polymerisable squaramide receptors for anion binding and sensing vol.2, pp.42, 2014, https://doi.org/10.1039/C4TC01776E
  5. Recognition of fractional non-innocent feature of osmium coordinated 2,2′-biimidazole or 2,2′-bis(4,5-dimethylimidazole) and their interactions with anions vol.44, pp.29, 2015, https://doi.org/10.1039/C5DT01763G
  6. Synthesis and specific fluoride binding properties of expanded dithiacalixphyrins vol.44, pp.6, 2015, https://doi.org/10.1039/C4DT03215B
  7. Substituent directed selectivity in anion recognition by a new class of simple osmium-pyrazole derived receptors vol.45, pp.6, 2016, https://doi.org/10.1039/C5DT04538J
  8. Substitution Effect on Near Infrared Absorbance Based Selective Fluoride Sensing of Indole Functionalized Thiourea Molecules vol.2019, pp.5, 2018, https://doi.org/10.1002/ejoc.201801534
  9. Syntheses of amide based anion receptors and investigation of their associations with anions and their molecular structures using proton NMR titration and DFT methods vol.1061, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2013.12.060
  10. Azo linked thiourea based effective dual sensor and its real samples application in aqueous medium vol.209, pp.None, 2012, https://doi.org/10.1016/j.snb.2014.11.139
  11. Dimethylsulphoxide solvate of N,N'-dinaphthylthiourea and its selective interactions with fluoride and copper(II) ions vol.1091, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2015.02.072
  12. Probing the Recognition of Halide and OxyAnions in the Polarprotic and Polaraprotic Solvent Mediums with Neutral UreaBased Receptors: A Computational Study vol.1, pp.13, 2012, https://doi.org/10.1002/slct.201600568
  13. Conformation and Visual Distinction between Urea and Thiourea Derivatives by an Acetate Ion and a Hexafluorosilicate Cocrystal of the Urea Derivative in the Detection of Water in Dimethylsulfoxide vol.2, pp.10, 2017, https://doi.org/10.1021/acsomega.7b01217
  14. 6-Polyamino-substituted quinolines: synthesis and multiple metal (CuII, HgIIand ZnII) monitoring in aqueous media vol.17, pp.17, 2012, https://doi.org/10.1039/c9ob00259f