DOI QR코드

DOI QR Code

ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane

  • Chung, Mi-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Seong-Wan (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Sang-Sik (Department of Biomedical Engineering, Kwandong University) ;
  • Park, Chong-Ook (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2012.02.06
  • Accepted : 2012.03.05
  • Published : 2012.03.31

Abstract

This paper describes the development of a glucose biosensor based on ion sensitive field effect transistor(ISFET) with a palladium(Pd) modified ion sensing membrane. By adopting Pd as a hydrogen sensitive layer and integrating a screen-printed reference electrode, the sensitivity and stability were considerably improved due to the high permeability and selectivity of the Pd hydrogen selective membrane. This paper suggests a new approach for realizing portable and highly sensitive glucose sensors for diagnosing and treating diabetes mellitus.

Keywords

References

  1. K.M.V. Narayan, J.B. Saaddine, J.P. Boyle, T.J. Thompson, and L.S. Geiss, "Impact of recent increase in incidence on future diabetes burden", Diabetes Care, vol. 29, no. 9, pp. 2114-2116, 2006. https://doi.org/10.2337/dc06-1136
  2. E.H. Yoo and S.Y. Lee, "Glucose biosensors: an overview of use in clinical practice", Sensors, vol. 10, no. 5, pp. 4558-4576. 2010. https://doi.org/10.3390/s100504558
  3. A. Heller and B. Feldman, "Electrochemical glucose sensors and their applications in diabetes management", Chem. Rev., vol. 108, no. 7, pp. 2482-2505, 2008. https://doi.org/10.1021/cr068069y
  4. S.V. Dzyadevych, A.P. Soldatkin, Y.I. Korpan, V.N. Arkhypova, A.V. El'skaya, J.M. Chovelon, C. Martelet, and N. Jaffrezic-Renault, "Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors", Anal. Bioanal.Chem., vol. 377, no. 3, pp. 496-506, 2003. https://doi.org/10.1007/s00216-003-2134-4
  5. N. Jaffrezic-Renault and C. Martelet, "Semiconductorbased micro-biosensors", Synth. Met., vol. 90, no. 3, pp. 205-210, 1997. https://doi.org/10.1016/S0379-6779(98)80008-8
  6. P. Bergveld, "Development of an ion-sensitive solidstate device for neurophysiological measurements", IEEE Trans. Biomed. Eng., vol. BME-17, no. 1, pp. 70- 71, 1970. https://doi.org/10.1109/TBME.1970.4502688
  7. P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology", IEEE Trans. Biomed. Eng., vol. BME-19, no. 5, pp. 342-351, 1972. https://doi.org/10.1109/TBME.1972.324137
  8. M.W. Shinwari, M.J. Deen, and D. Landheer, "Study of the electrolyte-insulator-semiconductor field-effect transistor(EISFET) with applications in biosensor design", Microelectron. Reliab., vol. 47, no.12, pp. 2025-2057, 2007. https://doi.org/10.1016/j.microrel.2006.10.003
  9. A.A. Shulga, A.C. Sandrovsky, V.I. Strikha, A.P. Soldatkin, N.F. Starodub, and A.V. Elskaya, "Overall characterization of ISFET-based glucose biosensor", Sens. Actuators B, vol. 10, no. 1, pp. 41-46, 1992. https://doi.org/10.1016/0925-4005(92)80009-M
  10. A.K. Covington and P.D. Whalley, "Recent advances in microelectronic ion-sensitive devices(ISFETs)", J. Chem. Soc., Faraday Trans. 1, vol. 82, pp. 1209-1215, 1986. https://doi.org/10.1039/f19868201209
  11. S.V. Dzyadevych, A.P. Soldatkin, A.V. El'skaya, C. Martelet, and N. Jaffrezic-Renault, "Enzyme biosensors based on ion-selective field-effect transistors", Anal. Chim. Acta, vol. 568, no. 1-2, pp. 248-258, 2006. https://doi.org/10.1016/j.aca.2005.11.057
  12. M.J. Schoning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)", Analyst, vol. 127, no. 9, pp. 1137-1151, 2002. https://doi.org/10.1039/b204444g
  13. I. Lundstrom, C. Nylander, and A. Spetz, "Palladiumsilicondioxide- silicon structures as hydrogen sensors in electrolytes", Electron. Lett., vol. 19, no.7, pp. 249- 251, 1983. https://doi.org/10.1049/el:19830171
  14. Q.J. Chi and S.J. Dong, "Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode", Anal. Chim. Acta, vol.278, no.1, pp. 17-23, 1993. https://doi.org/10.1016/0003-2670(93)80080-5
  15. S.H. Lim, J. Wei, J.Y. Lin, Q.T. Li, and J. KuaYou, "A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode", Biosens. Bioelectron., vol. 20, no. 11, pp. 2341-2346, 2005. https://doi.org/10.1016/j.bios.2004.08.005
  16. Z. Shi and J.A. Szpunar, "Synthesis of an ultra-thin palladium membrane for hydrogen extraction", Rev. Adv. Mater. Sci., vol. 15, no.1, pp. 1-9, 2007.
  17. K.I. Lundstrom, M.S. Shivaraman, and C.M. Svensson, "A hydrogen-sensitive Pd-gate MOS transistor", J. Appl. Phys., vol. 46, no. 9, pp. 3876- 3881, 1975. https://doi.org/10.1063/1.322185
  18. R. Kirchheim and R.B. McLellan, "Electrochemical methods for measuring diffusivities of hydrogen in palladium and palladium alloys", J. Electrochem. Soc., vol. 127, no. 11, pp. 2419-2425, 1980. https://doi.org/10.1149/1.2129486
  19. V. Volotovsky, A.P. Soldatkin, A.A. Shulga, V.K. Rossokhaty, V.I. Strikha, and A.V. Elskaya, "Glucose-sensitive ion-sensitive field-effect transistorbased biosensor with additional positively charged membrane Dynamic range extension and reduction of buffer concentration influence on the sensor response", Anal. Chim. Acta, vol. 322, no. 1-2, pp. 77- 81, 1996. https://doi.org/10.1016/0003-2670(95)00592-7