NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성 Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH

슈엔하이엔뷔엔^{a.b}, 팜티엔헝^a, 풍딘호앗^a, 이시홍^{a,*}, 이상욱^a, 이준형^a, 김정주^a, 허영우^a ^{a,*}경북대학교 신소재공학부(E-mail:dltlghd1579@knu.ac.kr)

^bSchool of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hanoi, Vietnam

Abstract. Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap (E_g) of 1.2–2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2–7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using NH₃-H₂O₂ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in NH₄OH at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at 50–70 °C. The gas sensing properties of the as-prepared CuO nanoplates were examined with C₂H₃OH, CH₃COCH₃, and NH₃ at 200–360 °C.