• Title/Summary/Keyword: Hydraulic Stability

Search Result 572, Processing Time 0.026 seconds

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang (이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석)

  • Oh, Seboong;Jang, Junhyuk;Yoon, Seokyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.695-705
    • /
    • 2024
  • As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Hydraulic stability at the head of rubble mound breakwater around the entrance harbour (항로 주변의 사석경사제 제두부의 수리학적 특성 연구)

  • Kim Hong-Jin;Ryu Cheong-Ro;Kang Yoon-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.303-308
    • /
    • 2004
  • The failure at the head section of rubble mound breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes. It was occurred by the topographical characteristics around the head of rubble mound breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure at the rubble mound breakwaters. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects and topography around structures. It is clarified that the structure was monitored safely designed for the design wave but the failure was occurred by the reason of breaker waves.

  • PDF

NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME (다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability (병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화)

  • Hong, Geum-Sik;Lee, Seung-Hwan;Choe, Jin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.

Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake (MR Brake를 이용한 공압근육매니퓰레이터의 지능제어)

  • Ahn, Kyoung-Kwan;Thanh, T.D.C.;Ahn, Young-Kong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF

Conjunctive Numerical Model of Surface Runoff and River Flow (지표면-하천 유출의 연계 수치모형)

  • Yu, Dong-Hun;Lee, Jeong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.91-103
    • /
    • 2001
  • In this studs, hydraulic routing model has been developed to predict the water level and discharge in each river section with considering the full interaction between surface runoff and river flow. It improved the computation of flood runoff by reflecting the shape of hydrograph that was determined by the geological and flood characteristics, and the excessive computation of the peak discharge was eliminated by considering the effect of infiltration. The Inflow from surface runoff to river flow was applied to the equation of continuity by implementing effectively the flow in a number of river section, and resulted in a numerical stability at the rapid variation of rainfall. Measurements were conducted during heavy rain in the watershed area of Yang-Yang Namdae-Chun. The present model was tested to the field, and the computed results were compared to the observed data. Its applicability was confirmed with its verification.

  • PDF

Numerical Simulation of the Water Level and Velocity Distribution of Main Point Agricultural Land Water Proof in Saemangeum Watershed (논문 - 새만금호 농업용지 방수제 주요지점의 수위 및 유속 분포 수치모의)

  • Kim, Dong-Joo;Kim, Ji-Sung;Park, Young-Jin
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.43-53
    • /
    • 2011
  • In this study, the internal development of the Saemangeum basic concept of the changes being promoted as a lead construction and agricultural land works(54.2 km) has established a numerical model for the scenario. Inner dike to the construction site to reflect the following conditions to reproduce the numerical model by each areas during construction inner dike where scour expected to perform a numerical analysis for the hydraulic review by areas with possible future changes were to predict. Simulation results showed that numerical simulation results for scour expected frequency of 100 years in flood conditions is simulated with 0.02 m/s~l.27 m/s scour velocity for high-impact factor is considered to be stable. Each start point and end point work area of inner dike reviewed and flow rate of 100 years flood, the velocity distribution in the influx of a large flow rate of 0.02 m/s~1.68 m/s occur during construction inner dike are not being evaluated as a special issue does not occur will be considered according to the method and order of construction inner dike stability review suggests that the future need to be made.

  • PDF