DOI QR코드

DOI QR Code

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment

수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구

  • Eom, Junghyun (Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Du Han (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hung Soo (Inha University)
  • 엄중현 (한국건설기술연구원 수자원하천연구본부) ;
  • 이두한 (한국건설기술연구원 수자원하천연구본부) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2022.09.05
  • Accepted : 2022.09.15
  • Published : 2022.12.01

Abstract

Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

발전소의 주요시설 중 발전 시스템 냉각용으로 사용되는 순환수는 순환수 취수부(Circulation Water Intake Basin)를 통해 공급된다. 순환수 취수부 중 흡입수조(Pump Sump)에서 발생하는 다양한 형태의 와류는 순환수펌프(Circulation Water Pump) 및 관로에 악영향을 미친다. 특히, 공기의 흡입을 동반한 자유표면 와류는 진동, 소음, 공동현상 등을 발생시켜 순환수펌프의 성능 저하, 관로의 손상을 일으키며 발전이 중단되는 주요 원인이 된다. 따라서 수리모형 실험을 통해 순환수 취수부에 대한 수리특성을 반드시 확인하고, 와류 발생 시 와류를 제어할 수 있는 적절한 와류제어장치(Anti Vortex Device)를 적용하여 원활한 발전소 운영이 가능하도록 해야 한다. 자유표면 와류 저감을 위해 와류제어장치 중커튼월(Curtain Wall)을 사용하는 것이 일반적이며, 자세한 내용은 American National Standard for Pump Intake Design에서 기술하고 있다. 본 연구에서는 리비아 Tripoli West 4×350 MW 발전소의 순환수 취수부를 대상으로 하였으며, 실제 운영조건을 적용하고, 수리모형 실험을 통해 순환수 취수부 중 흡입수조에서 발생하는 와류제어장치의 와류저감 효과를 분석하였다. 또한, 수중와류 제어를 위해 플로어 스플리터(floor splitter)는 기본적으로 적용하였고, 자유표면에서 발생하는 와류제어를 위해 새로운 형태인 컬럼 커튼월(Column Curtain Wall)을 추가적으로 적용하여 효과를 확인하였다. 본 연구에서는 일반적으로 적용되었던 커튼월에 새로 개발한 컬럼 커튼월을 추가적으로 적용하여 수리특성을 분석한 결과, 균일한 흐름이 형성되면서 와류가 제어되는 것을 확인하였다. 또한, 순환수펌프 관로 내에서 발생하는 와류각도는 ANSI/HI 9.8의 설계기준인 5° 이하로 나타나 흐름의 안정성을 확인하였다.

Keywords

References

  1. ANSI/HI 9.8. (1998). American national standard for pump intake design, Hydraulic Institute, Parsippany, New Jersey, USA.
  2. Byeon, H. H., Kim, S. J. and Yoon, B. M. (2020). "A study of the velocity distribution and vorticity measurement in the pump sump using piv." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 40, No. 2, pp. 145-156 (in Korean). https://doi.org/10.12652/Ksce.2020.40.2.0145
  3. Choi, J. W., Choi, Y. D., Lim, W. S. and Lee, Y. H. (2009). "Numerical analysis on the flow uniformity in a pump sump model with multi pump intake." Proceedings of the Korean Society for fluid Machinery, Vol. 12, No. 4, pp. 14-22 (in Korean). https://doi.org/10.5293/KFMA.2009.12.4.014
  4. Hyundai Engineering (2014). Tripoli west 4 × 350 mw power plant project.
  5. Kabiri-Samani, A. R. and Borghei, S. M. (2012). "Effects of anti-vortex plates on air entrainment by free vortex." Scientia Iranica, Vol. 20, No. 2, pp. 251-258.
  6. Kim, K. Y., Choi, J. H., Kim, J. Y., Ko, K. H., Kim, J. H., Cho, J. H., Lee, C. B., Kim, K. S. and Son, J. H. (1996). "Hydraulic model test of circulating water pump for thermal power plant." Proceedings of the Fall Conference of the Korean Society of Mechanical Engineers B, pp. 37-42 (in Korean).
  7. Lee, Y. H., Kim, S. J., Chen, Z., Singh, P. M. and Choi, Y. D. (2016). "Design and fundamental test on the pump sump scaled model." Korean Society for fluid Machinery Winter Conference, Vol. 2016, No. 11, pp. 355-356 (in Korean).
  8. Norizan, T. A., Harun, Z., Abdullah, S. and Mohtar, W. H. M. W. (2019). "Effects of floor splitter height on the effectiveness of swirl angle reduction in pump intake." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 57, No. 1, pp. 32-39.
  9. Sarkardeh, H., Zarrati, A. R. and Roshan, R. (2010). "Effect of intake head wall and trash rack on vortices." Journal of Hydraulic Research, Vol. 48, No. 1, pp. 108-112.
  10. Shabayek, S. A. (2010). "Improving approach flow hydraulics at pump intakes." International Journal of Civil & Environmental Engineering, IJCEE-IJENS, Vol. 10, No. 06.
  11. Sweeney, C. E., Elder, R. A. and Hay, D. (1982). "Pump sump design experience Summary." Journal of Hydraulic Division, Vol. 108, No. 3, pp. 361-377. https://doi.org/10.1061/JYCEAJ.0005835