DOI QR코드

DOI QR Code

Infiltration and Stability Analysis Using Double Modal Water Retention Curves for Unsaturated Slopes in Pohang

이중모드 함수특성곡선을 이용한 포항 산사태에 대한 불포화 비탈면의 침투 및 안정해석

  • Oh, Seboong (Yeungnam University) ;
  • Jang, Junhyuk (Korea Advanced Institue of Science and Technology) ;
  • Yoon, Seokyong (Dongbu Engineering)
  • 오세붕 (영남대학교 건설시스템공학과 ) ;
  • 장준혁 (한국과학기술원 건설및환경공학과) ;
  • 윤석용 (동부엔지니어링 지반공학부)
  • Received : 2024.05.16
  • Accepted : 2024.07.19
  • Published : 2024.10.01

Abstract

As a result of Typhoon Hinnamnoh, several slope failures occurred in the Pohang region, it is necessary to perform infiltration and slope stability analyses due to the actual rainfall. In the failed sites, samples were collected, and the hydro-mechanical properties of unsaturated soil were examined. Modeling the actual behavior using a single-mode function characteristic curve was found to be inadequate, leading to the adoption of a dual-mode function characteristic curve. The dual-mode function showed better agreement with the water retention test data. We calculated the unsaturated hydraulic conductivity for single and dual modes and performed rainfall-induced infiltration analysis. The variations in saturation and pore water pressure were calculated due to rainfall for three landslide-prone areas, Stability analysis based on effective stress of unsaturated soil was conducted, and safety factors were computed over time steps. The dual-mode model successfully reproduced landslides triggered by Typhoon Hinnamnoh, while the single-mode model exhibited a minimum safety factor of 1.2-1.3, making slope failure unpredictable. The dual-mode model accurately predicted instability in the slope by appropriately accounting for pore water pressure variations during Typhoon.

힌남노 태풍으로 인하여 포항 지역에 다수의 비탈면 파괴가 발생하여 실제 강우로 인한 침투 및 비탈면 안정해석이 필요하다. 붕괴가 발생한 지역을 대상으로 시료를 채취하였고, 불포화토의 수리-역학적 물성을 분석하였다. 단일모드에 의한 함수특성곡선으로 실제 거동을 모델하기 곤란하여 이중모드에 의한 함수특성곡선을 모델하였다. 이중모드는 함수특성시험 측정치를 더 적합하게 모델하는 결과를 보여주었다. 단일모드 및 이중모드에 대한 불포화 수리전도도를 산정하고 강우시 부정류 침투해석을 수행하였다. 세 군데 산사태 지역에 대하여 강우에 따른 포화도 및 간극수압의 변동을 계산하였다. 불포화토의 유효응력에 기반한 안정성 해석을 수행하고 시간단계에 따라서 안전율을 계산하였다. 이중모드 모델의 경우에는 힌남노 태풍에 의하여 발생한 산사태를 재현할 수 있었다. 반면 단일모드 모델에서는 최소안전율이 1.2~1.3으로 나타나서 비탈면 파괴를 예측할 수 없었다. 수리특성에 대한 이중모드 모델은 태풍시 간극수압의 변동을 적절하게 계산하고 비탈면의 불안정을 정확하게 예측하였다.

Keywords

Acknowledgement

This research is supported by grants from National Research Foundation of Korea (2019R1A2C1003604) which are greatly appreciated.

References

  1. Alyamani, M. S. and Sen, Z. (1993). "Determination of hydraulic conductivity from complete grain-size distribution curves." Groundwater, Vol. 31, No. 4, pp. 551-555.
  2. Bishop, A. W. (1959). "The principle of effective stress." Teknisk Ukeblad I Samarbeide Med Teknikk, Oslo, Norway, Vol. 106, No. 39, pp. 859-863.
  3. Bishop, A. W. and Blight, G. E. (1963). "Some aspects of effective stress in saturated and unsaturated soils." Geotechnique, Vol. 13, pp. 177-197.
  4. Durner, W. (1994). "Hydraulic conductivity estimation for soils with heterogeneous pore structure." Water Resources Research, Vol. 30, No. 2, pp. 211-223.
  5. Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). "The shear strength of unsaturated soils." Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
  6. GEO-SLOPE (2012a). Seepage modelling with SEEP/W 2012, GEO- SLOPE International Ltd, Canada.
  7. GEO-SLOPE (2012b). Stability modeling with SLOPE/W 2012, GEO-SLOPE International Ltd, Canada.
  8. Lu, N., Godt, J. W. and Wu, D. T. (2010). "A closed-form equation for effective stress in unsaturated soil." Water Resources Research, Vol. 46, No. 5, https://doi.org/10.1029/2009WR008646.
  9. Lu, N. and Likos, W. J. (2006). "Suction stress characteristic curve for unsaturated soil." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 131-142, https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
  10. METER Group Inc. (2021). WP4C manual, URL: library.metergroup.com/Manuals/20588_WP4C_Manual_Web.pdf.
  11. Mualem, Y. (1976). "A new model for predicting the hydraulic conductivity of unsaturated porous media." Water Resource Research, Vol. 12, No. 3, pp. 513-522, https://doi.org/10.1029/WR012i003p00513.
  12. Oh, S., Kim, Y. K. and Kim, J. W. (2015). "A modified van Genuchten-Mualem model of hydraulic conductivity in Korean residual soils." Water, Vol. 7, No. 10, pp. 5487-5502, https://doi.org/10.3390/w7105487.
  13. Oh, S. and Lu, N. (2015). "Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes." Engineering Geology, Vol. 184, pp. 96-103.
  14. Oh, S., Lu, N., Kim, Y. K., Lee, S. J. and Lee, S. R. (2012). "Relationship between the soil-water characteristic curve and the suction stress characteristic curve: Experimental evidence from residual soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, No. 1, pp. 47-57.
  15. Oh, S., Park, K.-H. and Kim, J.-W. (2014). "A hydraulic conductivity model considering the infiltration characteristics near saturation in unsaturated slopes." Journal of the Korean Geotechnical Society, Vol. 30, No. 1, pp. 37-47, https://doi.org/10.7843/KGS.2014.30.1.37 (in Korean).
  16. Oh, S., Yoo, Y., Park, G. and Kim, S. (2022). "A study on the acquisition technique of water retention characteristics based on the evaporation method and the chilled mirror method for unsaturated soils." Journal of the Korean GEO-environmental Society, Vol. 23, No. 4, pp. 11-20, https://doi.org/10.14481/jkges.2022.23.4.11 (in Korean).
  17. Priesack, E. and Durner, W. (2006). "Closed-form expression for the multi-modal unsaturated conductivity function." Vadose Zone Journal, Vol. 5, No. 1, pp. 121-124, https://doi.org/10.2136/vzj2005.0066.
  18. Rawlins, S. L. and Campbell, G. S. (1986). "Water potential: Thermocouple psychrometry." Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, Vol. 5, pp. 597-618, https://doi.org/10.2136/sssabookser5.1.2ed.c24.
  19. van Genuchten, M. T. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892-898, https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  20. Vukovic, M. and Soro, A. (1992). Determination of hydraulic conductivity of porous media from grain-size composition, Water Resources Publications, LLC Highlands Ranch, Colorado.
  21. Wayllace, A. and Lu, N. (2012). "A transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions." Geotechnical Testing Journal, Vol. 35, No. 1, pp. 103-117, https://doi.org/10.1520/GTJ103596.