• 제목/요약/키워드: Hilbert-type integral inequality

검색결과 16건 처리시간 0.027초

On a Relation to Hilbert's Integral Inequality and a Hilbert-Type Inequality

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • 제49권3호
    • /
    • pp.563-572
    • /
    • 2009
  • In this paper, by introducing some parameters and using the way of weight function, a new integral inequality with a best constant factor is given, which is a relation between Hilbert's integral inequality and a Hilbert-type inequality. As applications, the equivalent form, the reverse forms and some particular inequalities are considered.

On a Hilbert-Type Integral Inequality with a Combination Kernel and Applications

  • Yang, Bicheng
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.281-288
    • /
    • 2010
  • By introducing some parameters and using the way of weight function and the technic of real analysis and complex analysis, a new Hilbert-type integral inequality with a best constant factor and a combination kernel involving two mean values is given, which is an extension of Hilbert's integral inequality. As applications, the equivalent form and the reverse forms are considered.

The Hilbert-Type Integral Inequality with the System Kernel of-λ Degree Homogeneous Form

  • Xie, Zitian;Zeng, Zheng
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.297-306
    • /
    • 2010
  • In this paper, the integral operator is used. We give a new Hilbert-type integral inequality, whose kernel is the homogeneous form with degree - $\lambda$ and with three pairs of conjugate exponents and the best constant factor and its reverse form are also derived. It is shown that the results of this paper represent an extension as well as some improvements of the earlier results.

DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL

  • Ban, Biserka Drascic;Pecaric, Josip;Peric, Ivan;Pogany, Tibor
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.537-546
    • /
    • 2010
  • Multiple discrete Hilbert type inequalities are established in the case of non-homogeneous kernel function by means of Laplace integral representation of associated Dirichlet series. Using newly derived integral expressions for the Mordell-Tornheim Zeta function a set of subsequent special cases, interesting by themselves, are obtained as corollaries of the main inequality.