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Abstract. In this paper, by introducing some parameters and using the way of weight

function, a new integral inequality with a best constant factor is given, which is a relation

between Hilbert’s integral inequality and a Hilbert-type inequality. As applications, the

equivalent form, the reverse forms and some particular inequalities are considered.

1. Introduction

If 0 <
∫∞
0

f2(x)dx < ∞ and 0 <
∫∞
0

g2(x)dx < ∞, then the well known
Hilbert’s integral inequality is as follows[1]:

(1)
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy < π

(∫ ∞

0

f2(x)dx

∫ ∞

0

g2(x)dx

) 1
2

,

where the constant factor π is the best possible. Following the same condition, we
also have a Hilbert-type integral inequality as follows[1]

(2)
∫ ∞

0

∫ ∞

0

f(x)g(y)
max{x, y}

dxdy < 4
(∫ ∞

0

f2(x)dx

∫ ∞

0

g2(x)dx

) 1
2

,

where the constant factor 4 is still the best possible. Inequalities (1) and (2) are
important in analysis and its applications[1,2]. In recent years, by introducing some
parameters and estimating the weight function, a number of extensions of (1) and
(2) were given by Yang et al. [3], [4], [5]. In 2006, Li et al. [6] gave the following
inequality with a kernel coupling (1) and (2):

(3)
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y + max{x, y}

dxdy < c

(∫ ∞

0

f2(x)dx

∫ ∞

0

g2(x)dx

) 1
2

,

where the constant factor c = 2
√

2 arctan 1√
2

is the best possible. In 2007, Xie [7]
gave a best extension of (3) by introducing some parameters, and Guo et al. [8], [9]
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gave a similar form of (3) as

(4)
∫ ∞

0

∫ ∞

0

f(x)g(y)dxdy

x + y + min{x, y}
< c̃

(∫ ∞

0

f2(x)dx

∫ ∞

0

g2(x)dx

) 1
2

,

where the constant factor c̃ = 2
√

2 arctan
√

2 is the best possible.
In this paper, by introducing some parameters and using the way of weight

function, we give a new extended inequality of (3) and (4) with a best constant
factor, which is a relation between (1) and (2). The equivalent form the reverse
forms and some particular inequalities are obtained.

2. Some lemmas

Lemma 1. If λ > 0, B,C ≥ 0, A > −min{B,C}, setting kλ(A,B,C) :=∫∞
0

1
A max{uλ, 1}+ Buλ + C

u
λ
2−1du, then

(5)

kλ(A,B, C) =



2
λ

arctan
√

B
A+C√

B(A + C)
+

arctan
√

C
A+B√

C(A + B)

 , B, C > 0, A > −min{B,C}

2
λ

[
1

A + C
+

2√
AC

arctan

√
C

A

]
, B = 0, C, A > 0

2
λ

[
1

A + B
+

2√
AB

arctan

√
B

A

]
, B > 0, C = 0, A > 0

4
λA

, B = C = 0, A > 0.

Proof. Setting v = uλ, we find

kλ(A,B, C) =
1
λ

[∫ 1

0

v−
1
2

A + Bv + C
dv +

∫ ∞

1

v−
1
2

(A + B)v + C
dv

]
(6)

=
1
λ

[∫ 1

0

u−
1
2

Bu + (A + C)
du +

∫ 1

0

u−
1
2

Cu + (A + B)
du

]
.

(a) For B,C > 0, A > −min{B,C}, we obtain

kλ(A,B, C) =
1
λ

[
2√

B(A + C)

∫ 1

0

1
B

A+C u + 1
d

√
B

A + C
u

+
2√

C(A + B)

∫ 1

0

1
C

A+B u + 1
d

√
C

A + B
u

]

=
2
λ

[
arctan

√
B/(A + C)√

B(A + C)
+

arctan
√

C/(A + B)√
C(A + B)

]
;
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(b) for B = 0, C, A > 0, by (6), we find

kλ(A, 0, C) =
1
λ

∫ 1

0

(
u−

1
2

A + C
+

u−
1
2

Cu + A

)
du

=
2
λ

(
1

A + C
+

1√
AC

arctan

√
C

A

)
;

(c) similarly, for A,B > 0, C = 0, kλ(A,B, 0) =
2
λ

(
1

A + B
+

arctan
√

B/A√
AB

)
;

(d) for B = C = 0, A > 0, we find kλ(A, 0, 0) =
2
λ

∫ 1

0

1
A

u−
1
2 du =

4
λA

.

Hence Expression (5) is valid. The lemma is proved.

Lemma 2. Assume that p > 0(p 6= 1), |q| > 0, λ > 0, B,C ≥ 0, A > −min{B,C}
and 0 < ε < λ

2 min{p, |q|}, then we have∫ 1

0

u
λ
2 + ε

q−1du

Buλ + (A + C)
=

∫ 1

0

u
λ
2−1du

Buλ + (A + C)
+ o1(1)(ε → 0+);(7) ∫ ∞

1

u
λ
2−

ε
p−1du

(A + B)uλ + C
=

∫ ∞

1

u
λ
2−1du

(A + B)uλ + C
+ o2(1)(ε → 0+);(8) ∫ 1

0

u
λ
2−

ε
p−1du

Buλ + (A + C)
=

∫ 1

0

u
λ
2−1du

Buλ + (A + C)
+ o3(1)(ε → 0+).(9)

Proof. In view of the assumption, for ε → 0+, we find

0 <

∫ 1

0

u
λ
2−1du

Buλ + (A + C)
−
∫ 1

0

u
λ
2 + ε

q−1du

Buλ + (A + C)

≤
∫ 1

0

u
λ
2−1(1− u

ε
q )du

A + C
=

1
A + C

(
2
λ
− 1

λ
2 + ε

q

)
→ 0;

0 <

∫ ∞

1

u
λ
2−1du

(A + B)uλ + C
−
∫ ∞

1

u
λ
2−

ε
p−1du

(A + B)uλ + C

≤
∫ ∞

1

u
−λ
2 −1(1− u−

ε
p )du

A + B
=

1
A + B

(
2
λ
− 1

λ
2 + ε

p

)
→ 0;

0 <

∫ 1

0

u
λ
2−

ε
p−1du

Buλ + (A + C)
−
∫ 1

0

u
λ
2−1du

Buλ + (A + C)

≤
∫ 1

0

u
λ
2−1(u−

ε
p − 1)du

A + C
=

1
A + C

(
1

λ
2 −

ε
p

− 2
λ

)
→ 0.

Hence Expressions (7), (8) and (9) are valid. The lemma is proved.
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3. Main results and applications

Theorem 1. If p > 0(p 6= 1), 1
p + 1

q = 1, λ > 0, B,C ≥ 0, A > −min{B,C},
φr(x) = xr(1−λ

2 )−1(r = p, q), f, g ≥ 0, 0 < ||f ||p,φp = {
∫∞
0

xp(1−λ
2 )−1fp(x)dx}

1
p

< ∞ and 0 < ||g||q.φq
= {
∫∞
0

xq(1−λ
2 )−1gq(x)dx}

1
q < ∞, then

(a) for p > 1,we have the following equivalent inequalities:

(10)

Iλ :=
∫ ∞

0

y
pλ
2 −1

(∫ ∞

0

f(x)dx

A max{xλ, yλ}+ Bxλ + Cyλ

)p

dy < kp
λ(A,B,C)||f ||pp,φp

;

(11) Jλ :=
∫ ∞

0

∫ ∞

0

f(x)g(y)dxdy

A max{xλ, yλ}+ Bxλ + Cyλ
< kλ(A,B,C)||f ||p,φp

||g||q.φq
;

(b) for 0 < p < 1, we have the reverse equivalent forms of (10) and (11).

Proof. (a) Setting u = x/y, we find

$λ(y) : =
∫ ∞

0

y
λ
2 x

λ
2−1

A max{xλ, yλ}+ Bxλ + Cyλ
dx = kλ(A,B, C);(12)

ωλ(x) : =
∫ ∞

0

x
λ
2 y

λ
2−1

A max{xλ, yλ}+ Bxλ + Cyλ
dy = kλ(A,B, C).(13)

By Hölder’s inequality with weight[10] and (12), for y ∈ (0,∞),we obtain(∫ ∞

0

f(x)dx

A max{xλ, yλ}+ Bxλ + Cyλ

)p

(14)

=

{∫ ∞

0

1
A max{xλ, yλ}+ Bxλ + Cyλ

[
x(1−λ

2 )/q

y(1−λ
2 )/p

f(x)

][
y(1−λ

2 )/p

x(1−λ
2 )/q

]
dx

}p

≤
∫ ∞

0

x(1−λ
2 )(p−1)y

λ
2−1fp(x)dx

A max{xλ, yλ}+ Bxλ + Cyλ

{∫ ∞

0

y(1−λ
2 )(q−1)x

λ
2−1dx

A max{xλ, yλ}+ Bxλ + Cyλ

}p−1

= kp−1
λ (A,B,C)y1− pλ

2

∫ ∞

0

x(1−λ
2 )(p−1)y

λ
2−1fp(x)

A max{xλ, yλ}+ Bxλ + Cyλ
dx.

By (14 ) and (13), in view of Fubini’s Theorem[11], it follows

Iλ ≤ kp−1
λ (A,B, C)

∫ ∞

0

∫ ∞

0

x(1−λ
2 )(p−1)y

λ
2−1fp(x)

A max{xλ, yλ}+ Bxλ + Cyλ
dxdy(15)

= kp−1
λ (A,B, C)

∫ ∞

0

[∫ ∞

0

x(1−λ
2 )(p−1)y

λ
2−1dy

A max{xλ, yλ}+ Bxλ + Cyλ

]
fp(x)dx

= kp−1
λ (A,B, C)

∫ ∞

0

ωλ(x)φp(x)fp(x)dx = kp
λ(A,B,C)||f ||pp,φp

.
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If there exists y ∈ (0,∞), such that (14) takes the form of equality, then[10], there ex-
ist constants A and B, satisfying they are not all zero and Ax(1−λ

2 )(p−1)y
λ
2−1fp(x)

= By(1−λ
2 )(q−1)x

λ
2−1 a.e. in (0,∞). It follows Axp(1−λ

2 )fp(x) = Byq(1−λ
2 ) a.e.

in (0,∞). We affirm that A 6= 0, otherwise B = A = 0. Hence we obtain
xp(1−λ

2 )−1fp(x) = [Byq(1−λ
2 )]/(Ax) a.e. in (0,∞), which contradicts the fact that

0 < ||f ||p,φp
< ∞. Then (14) keeps the form of strict inequality for any y ∈ (0,∞);

so does (15). And (10) is valid .
By Hölder’s inequality[10], we find

(16) Jλ =
∫ ∞

0

[∫ ∞

0

y
−1
p + λ

2 f(x)dx

A max{xλ, yλ}+ Bxλ + Cyλ

]
[φ

1
q
q (y)g(y)]dy ≤ I

1
p

λ ||g||q.φq .

In view of (10), we have (11).
On the other-hand, suppose (11) is valid. Since ||f ||pp,φp

> 0, there exists n0 ∈ N,

such that for n ≥ n0,
∫ n

1/n
φp(x)[f(x)]pndx > 0, where [f(x)]n = n, for f(x) ≥

n; [f(x)]n = f(x), for f(x) < n. For n ≥ n0, setting

(17) gn(y) := y
pλ
2 −1

[∫ n

1/n

[f(x)]ndx

A max{xλ, yλ}+ Bxλ + Cyλ

]p−1

, y ∈ (0, n],

by (11), we find

0 <

∫ n

1/n

φq(y)gq
n(y)dy(18)

=
∫ n

1/n

y

pλ

2
−1

[∫ n

1/n

[f(x)]ndx

A max{xλ, yλ}+ Bxλ + Cyλ

]p

dy

=
∫ n

1/n

∫ n

1/n

[f(x)]ngn(y)
A max{xλ, yλ}+ Bxλ + Cyλ

dxdy

< K̃λ(A)

{∫ n

1/n

φp(x)[f(x)]pndx

} 1
p
{∫ n

1/n

φq(y)gq
n(y)dy

} 1
q

< ∞;

(19)

{∫ n

1/n

φq(y)gq
n(y)dy

} 1
p

< K̃λ(A)
{∫ ∞

0

φp(x)fp(x)dx

} 1
p

.

Hence 0 <
∫∞
0

φq(y)gq
∞(y)dy < ∞, and then (18) and (19) are valid for n →∞ by

using (11). Therefore we have (10), which is equivalent to (11).
(b) By the reverse Hölder’s inequality and the same way, we can obtain the

reverse forms of (10) and (16). And then we deduce the reverse form of (11). On
the other-hand, suppose that the reverse form of (11) is valid. Setting gn(y) as
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(17), by the reverse form of (11), we find the reverse form of (18) and (19), and
then deduce the reverse form of (10), which is equivalent to the reverse form of (11).
The theorem is proved. �

Theorem 2. As the assumption of Theorem 1, all the constant factors in (10),
(11) and the reverse forms are the best possible.

Proof. For 0 < ε < λ
2 min{p, |q|}, setting fε, gε as: fε(x) = gε(x) = 0, for x ∈ (0, 1);

fε(x) = x
λ
2−

ε
p−1, gε(x) = x

λ
2−

ε
q−1, for x ∈ [1,∞).

(a) For p > 1, if there exists constant 0 < k ≤ kλ(A,B, C), such that (11) is
still valid as we replace kλ(A,B,C) by k, then in particular, we have

k = εk||fε||p,φp
||gε||q.φq

> ε

∫ ∞

0

∫ ∞

0

fε(x)gε(y)dxdy

A max{xλ, yλ}+ Bxλ + Cyλ

= ε

∫ ∞

1

x
λ
2−

ε
p−1

[∫ ∞

1

y
λ
2−

ε
q−1

A max{xλ, yλ}+ Bxλ + Cyλ
dy

]
dx.

Setting u = x/y in the above integral, by Fubini’s Theorem, we obtain

k > ε

∫ ∞

1

x−ε−1

[∫ x

0

u
λ
2 + ε

q−1

A max{uλ, 1}+ Buλ + C
du

]
dx

= ε

{∫ ∞

1

x−ε−1

[∫ 1

0

u
λ
2 + ε

q−1du

Buλ + (A + C)
+
∫ x

1

u
λ
2 + ε

q−1du

(A + B)uλ + C

]
dx

}

=
∫ 1

0

u
λ
2 + ε

q−1du

Buλ + (A + C)
+ ε

∫ ∞

1

(
∫∞

u
x−ε−1dx)u

λ
2 + ε

q−1

(A + B)uλ + C
du

=
∫ 1

0

u
λ
2 + ε

q−1du

Buλ + (A + C)
+
∫ ∞

1

u
λ
2−

ε
p−1du

(A + B)uλ + C
.

For ε → 0+, in view of (7) and (8), we obtain k ≥ kλ(A,B, C). Hence k =
kλ(A,B, C) is the best constant factor of (11). If the constant factor in (10) is
not the best possible, then by (16), we may get a contradiction that the constant
factor in (11) is not the best possible.

(b) For 0 < p < 1, if there exists K ≥ kλ(A,B,C), such that the reverse form
of (11) is valid as we replace kλ(A,B,C) by K, then we have
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K = εK||fε||p,φp
||gε||q.φq

< ε

∫ ∞

0

∫ ∞

0

fε(x)gε(y)dxdy

A max{xλ, yλ}+ Bxλ + Cyλ

= ε

∫ ∞

1

y
λ
2−

ε
q−1

[∫ ∞

1

x
λ
2−

ε
p−1

A max{xλ, yλ}+ Bxλ + Cyλ
dx

]
dy

≤ ε

∫ ∞

1

y
λ
2−

ε
q−1

[∫ ∞

0

x
λ
2−

ε
p−1

A max{xλ, yλ}+ Bxλ + Cyλ
dx

]
dy

=
∫ 1

0

u
λ
2−

ε
p−1du

A max{uλ, 1}+ Buλ + C
+
∫ ∞

1

u
λ
2−

ε
p−1du

A max{uλ, 1}+ Buλ + C

≤
∫ 1

0

u
λ
2−

ε
p−1

Buλ + (A + C)
du +

∫ ∞

1

u
λ
2−1

(A + B)uλ + C
du.

For ε → 0+, in view of (9), we obtain K ≤ kλ(A,B, C). Hence K = kλ(A,B,C) is
the best constant factor of the reverse form of (11). If the constant factor in the
reverse form of (10) is not the best possible, then by the reverse form of (16), we
may get a contradiction that the constant factor in the reverse form of (11) is not
the best possible. The theorem is proved. �

In the following corollaries, some words that p > 0(p 6= 1), 1
p + 1

q = 1, λ >

0, f, g ≥ 0, 0 < ||f ||p,φp
= {

∫∞
0

xp(1−λ
2 )−1fp(x)dx}

1
p < ∞ ,0 < ||g||q,φq

=
{
∫∞
0

xq(1−λ
2 )−1gq(x)dx}

1
q < ∞, and the constant factors are the best possible are

omitted. We obviously have the formula that

|x− y| = 2max{x, y} − x− y; min{x, y} = x + y −max{x, y}.

Since max{x, y} − a|x − y| = (1 − 2a) max{x, y} + ax + ay, setting B = C = a ≥
0, A = 1− 2a > −min{B,C} = −a, in (5), we find 0 ≤ a < 1 and

Kλ(a) := kλ(1− 2a, a, a) =


4

λ
√

a(1− a)
arctan

√
a

1− a
, 0 < a < 1

4
λ

, a = 0.

By Theorem1, it follows

Corollary 1. For p > 1, 0 ≤ a < 1, we have the equivalent forms as:

(20)
∫ ∞

0

y
pλ
2 −1

(∫ ∞

0

f(x)dx

max{xλ, yλ} − a|xλ − yλ|

)p

dy < Kp
λ(a)||f ||pp,φp

;

(21)
∫ ∞

0

∫ ∞

0

f(x)g(y)
max{xλ, yλ} − a|xλ − yλ|

dxdy < Kλ(a)||f ||p,φp
||g||q,φq

.
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Since max{x, y}+ amin{x, y} = (1− a) max{x, y}+ ax+ ay, setting B = C = a ≥
0, A = 1− a > −min{B,C} = −a, in (5), we find a ≥ 0 and

K ′
λ(a) := kλ(1− a, a, a) =


4

λ
√

a
arctan

√
a, a > 0

4
λ

, a = 0.

By Theorem1, it follows[12]

Corollary 2. For p > 1, a ≥ 0, we have the following equivalent forms:

(22)
∫ ∞

0

y
pλ
2 −1

(∫ ∞

0

f(x)dx

max{xλ, yλ}+ amin{xλ, yλ}

)p

dy < K ′
λ

p(a)||f ||pp,φp
;

(23)
∫ ∞

0

∫ ∞

0

f(x)g(y)dxdy

max{xλ, yλ}+ amin{xλ, yλ}
< K ′

λ(a)||f ||p,φp
||g||q,φq

.

Since ax + by + c|x − y| = 2cmax{x, y} + (a − c)x + (b − c)y, setting B =
a− c ≥ 0, C = b− c ≥ 0, A = 2c > −min{B,C} = −min{a, b}+ c, in (5), we find
−min{a, b} < c ≤ min{a, b} and

K̃λ(a, b, c) := kλ(2c, a− c, b− c)

=



2
λ

 arctan
√

a−c
b+c√

(a− c)(b + c)
+

arctan
√

b−c
a+c√

(b− c)(a + c)

 ,−min{a, b} < c < min{a, b}

2
λ

[
1

b + c
+

1√
2c(b− c)

arctan

√
b− c

2c

]
, a = c, b > c > 0

2
λ

[
1

a + c
+

1√
2c(a− c)

arctan
√

a− c

2c

]
, b = c, a > c > 0

2
λc

, a = b = c > 0.

By Theorem1, it follows

Corollary 3. For p > 1, −min{a, b} < c ≤ min{a, b} , we have the following
equivalent forms:

(24)
∫ ∞

0

y
pλ
2 −1

(∫ ∞

0

f(x)dx

axλ + byλ + c|xλ − yλ|

)p

dy < K̃p
λ(a, b, c)||f ||pp,φp

;

(25)
∫ ∞

0

∫ ∞

0

f(x)g(y)
axλ + byλ + c|xλ − yλ|

dxdy < K̃λ(a, b, c)||f ||p,φp
||g||q,φq

.
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Since ax + by − cmin{x, y} = cmax{x, y} + (a − c)x + (b − c)y, setting B =
a− c, C = b− c ≥ 0, A = c > −min{B,C} = −min{a− c, b− c} = −min{a, b}+ c,
in (5), we find c ≤ min{a, b}, a, b > 0 and

k′λ(a, b, c) := kλ(c, a− c, b− c)

=



2
λ

arctan
√

a− c

b√
(a− c)b

+
arctan

√
b− c

a√
(b− c)a

 , a, b > 0, c < min{a, b}

2
λ

[
1
b

+
1√

c(b− c)
arctan

√
b− c

c

]
, a = c, 0 < c < b

2
λ

[
1
a

+
1√

c(a− c)
arctan

√
a− c

c

]
, b = c, 0 < c < a

4
λc

, a = b = c > 0

By Theorem1, it follows

Corollary 4. For p > 1, c ≤ min{a, b}, a, b > 0, we have the following equivalent
forms:

(26)
∫ ∞

0

y
pλ
2 −1

(∫ ∞

0

f(x)dx

axλ + byλ − cmin{xλ, yλ}

)p

dy < k′λ
p(a, b, c)||f ||pp,φp

;

(27)
∫ ∞

0

∫ ∞

0

f(x)g(y)
axλ + byλ − cmin{xλ, yλ}

dxdy < k′λ(a, b, c)||f ||p,φp
||g||q,φq

.

Remarks. (i) For 0 < p < 1, we have the reverse forms of (20) -(27) with the best
constant factors. (ii) For p = q = 2, λ = 1 in (11), if A = B = C = 1, we obtain
(3); if A = −1, B = C = 2, we obtain (4); if A = 0, B = C = 1, we obtain (1); if
A = 1, B = C = 0, we obtain (2). Hence we give a new inequality (11) with a best
constant factor, which is a relation between (1) and (2). Also it is an extension of
(3) and (4).
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