DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL |
Ban, Biserka Drascic
(FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA)
Pecaric, Josip (FACULTY OF TEXTILE TECHNOLOGY UNIVERSITY OF ZAGREB) Peric, Ivan (FACULTY OF FOOD TECHNOLOGY AND BIOTECHNOLOGY UNIVERSITY OF ZAGREB) Pogany, Tibor (FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA) |
1 | J. M. Borwein, Hilbert’s inequality and Witten’s zeta-function, Amer. Math. Monthly 115 (2008), no. 2, 125-137. DOI |
2 | O. Espinosa and V. H. Moll, The evaluation of Tornheim double sums. I, J. Number Theory 116 (2006), no. 1, 200-229. DOI ScienceOn |
3 | M. V. Subbarao and R. Sitaramachandra Rao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245-255. DOI |
4 | L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314. DOI ScienceOn |
5 | H. Tsumura, On certain polylogarithmic double series, Arch. Math. (Basel) 88 (2007), no. 1, 42-51. DOI ScienceOn |
6 | G. H. Hardy, J. E. Littlewood, and Gy. Polya, Inequalities, Cambridge University Press, Cambridge, 1934. |
7 | T. K. Pogany, Hilbert’s double series theorem extended to the case of non–homogeneous kernels, J. Math. Anal. Appl. 342 (2008), no. 2, 1485-1489. DOI ScienceOn |
8 | J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175-193. DOI |
9 | K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in analytic number theory and Diophantine equations (Bonn, January–June 2002.) D.R. Heath-Brown and B. Z. Moroz (eds.), Bonner Mathematische Schriften Nr. 360 (Bonn, 2003), no. 25, 17pp. |
10 | D. S. Mitrinovic, Analiticke nejednakosti, Gradevinska knjiga, Beograd, 1970. |
11 | T. K. Pogany, H. M. Srivastava, and Z. Tomovski, Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Comput. 173 (2006) 69-108. DOI ScienceOn |
12 | H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 3, 395-405. DOI ScienceOn |