Browse > Article
http://dx.doi.org/10.4134/JKMS.2010.47.3.537

DISCRETE MULTIPLE HILBERT TYPE INEQUALITY WITH NON-HOMOGENEOUS KERNEL  

Ban, Biserka Drascic (FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA)
Pecaric, Josip (FACULTY OF TEXTILE TECHNOLOGY UNIVERSITY OF ZAGREB)
Peric, Ivan (FACULTY OF FOOD TECHNOLOGY AND BIOTECHNOLOGY UNIVERSITY OF ZAGREB)
Pogany, Tibor (FACULTY OF MARITIME STUDIES UNIVERSITY OF RIJEKA)
Publication Information
Journal of the Korean Mathematical Society / v.47, no.3, 2010 , pp. 537-546 More about this Journal
Abstract
Multiple discrete Hilbert type inequalities are established in the case of non-homogeneous kernel function by means of Laplace integral representation of associated Dirichlet series. Using newly derived integral expressions for the Mordell-Tornheim Zeta function a set of subsequent special cases, interesting by themselves, are obtained as corollaries of the main inequality.
Keywords
discrete Hilbert type inequality; discrete multiple Hilbert type inequality; Dirichlet-series; non-homogeneous kernel; homogeneous kernel; multiple H$\ddot{o}$lder inequality; Tornheim's double sum; Witten Zeta function; Mordell-Tornheim Zeta function;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 J. M. Borwein, Hilbert’s inequality and Witten’s zeta-function, Amer. Math. Monthly 115 (2008), no. 2, 125-137.   DOI
2 O. Espinosa and V. H. Moll, The evaluation of Tornheim double sums. I, J. Number Theory 116 (2006), no. 1, 200-229.   DOI   ScienceOn
3 M. V. Subbarao and R. Sitaramachandra Rao, On some infinite series of L. J. Mordell and their analogues, Pacific J. Math. 119 (1985), no. 1, 245-255.   DOI
4 L. Tornheim, Harmonic double series, Amer. J. Math. 72 (1950), 303-314.   DOI   ScienceOn
5 H. Tsumura, On certain polylogarithmic double series, Arch. Math. (Basel) 88 (2007), no. 1, 42-51.   DOI   ScienceOn
6 G. H. Hardy, J. E. Littlewood, and Gy. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
7 T. K. Pogany, Hilbert’s double series theorem extended to the case of non–homogeneous kernels, J. Math. Anal. Appl. 342 (2008), no. 2, 1485-1489.   DOI   ScienceOn
8 J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175-193.   DOI
9 K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in analytic number theory and Diophantine equations (Bonn, January–June 2002.) D.R. Heath-Brown and B. Z. Moroz (eds.), Bonner Mathematische Schriften Nr. 360 (Bonn, 2003), no. 25, 17pp.
10 D. S. Mitrinovic, Analiticke nejednakosti, Gradevinska knjiga, Beograd, 1970.
11 T. K. Pogany, H. M. Srivastava, and Z. Tomovski, Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Comput. 173 (2006) 69-108.   DOI   ScienceOn
12 H. Tsumura, On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 3, 395-405.   DOI   ScienceOn