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ABSTRACT. In this paper, the integral operator is used. We give a new Hilbert-type
integral inequality, whose kernel is the homogeneous form with degree —A and with three
pairs of conjugate exponents and the best constant factor and its reverse form are also
derived. It is shown that the results of this paper represent an extension as well as some
improvements of the earlier results.

1. Introduction

Ifp > 1, l+l:1feLP(() o0), and g € L(0,00), f(x), g(x) > 0, such that
0< [/ (x d:c<ooand0<fogq x)dx < oo, then [1]:

(1.1) /Om/()dexdy < @ {/Ooofp(m)dx}l/p {/Ooogq(x)da:}l/q,

where the constant factor L is the best possible.
sin(r/p)
Inequality (1.1) is named Hardy-Hilbert’s integral inequality,which is important

in analysis and applications. It has been studied and generalized in many directions
by a number of people [2 21]

Let ( Tf =Jy H (@)dz, || fll = fo |f(2)[P)!/P. We have (Tf)(g) :=
O : (x)dz)g(y )dy If H(z,y) = , in 2006,Yang (2] rewrote (1.1) as
(1.2) (Tf)(g) < £ 1lpll9llg

(W/p)

where T': L"(0,00) — L"(0,00)(r = p,q) is an integral operator.
For the purposes, we introduce some notations as follows:
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Let p > 0, p#l i +7:1 > 1, % %:1 A norm of f with the weight function
w(x) is defined by

1 Fllpow = { I w<x>|f<x>|pdx}l/p.

where f(z), w(xz) > 0 are measurable functions defined on (0, 00). If || f]|p.0 < 00,
then it is marked by f € L? (Ry).

Supposing that H(x,y) > 0 is a real measurable in (0, 00) x (0, 00) and satisfies
H(uz,uy) = v H(x,y)(A > 0,u > 0) for (z,y) € (0,00) x (0,00), then H(z,y)
is called a homogeneous function of —\-degree. Then we have the formal inner as
follows:

T19)=To.n)= [ ( | s )g(y)dy— || Hes@atdsay

Define the integral operator T as:
for f e LP(0,0),

/ H(z,y)f(zx)dz,y € (0,00)

or for g€ L(0,00),

/ H(z,y)9(y)dy,x € (0,00)

where T is call Hilbert-type integral operator, if T is bounded. H(z,y) is call the
kernel of T'.

The main objective of this paper is to build a new Hilbert-type integral inequal-
ity, whose Kernel is the homogeneous form degree —\ with three pairs of conjugate
exponents and with the best constant factor. As applications,the equivalent forms
and some particular results are given.

In the following, we always suppose that
Dt>0,p>0p#l s +t=1r>1, 1+1=11>1 1+ =1
2) H(x,y) > 0 is a real measurable in (0,00) x (0,00) homogeneous function of
—A-degree(A > 0), and 0 < [[°H(1,0)0 1+~ 52 do < oo

3) w(z) = gP-tH2E=)-1
yp(t7 2th525/\ )71.

2tl—rA ~
_ trlr )71

2th—sA _
sw(y) =yt w1 w(y) =

(z) =zt

2. Lemma and main results

Lemma. Define the weight functions:

e (4 2Ty q(l {4 2thos))
/ H :E y Zth S—dy, / H 1' y 2tl 2 s dr
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then

W(z) = Kyw(z), W(y) = Kow(y)

where

K1:/ H(1,0) *1+t,2“§'h“dg, K2:/ H(1a0)017t+¥72+)‘d0
0 0

and K = K1 = KQ.

Proof. Setting y = xo we have W (z) = Kjw(z).
on the other hand, we have

{](1 t+2th ) y
0= [ s ) = Kaily)
easilyK; = Ky = K. the lemma is proved. O
Theorem 2.1. Ifp>1, fe LA (Ry), g € LE(Ry), and ||fllpw >0, |gllga >0,
then
@1 (@)= Tos)= [ [ Ha @y < KISyl

If fe L (Ry) and || fllpw > 0, then Tf € LY (R) and

> 2th— a>\ %
2) 127 = { [0 ([ @) a}” < 61l
0

K s defined by lemma, both constant factors, K and KP? are the best possible and
inequalities (2.1) and (2.2) are equivalent.

Theorem 2.2. If1>p >0, f(z),g(z) >0, such that f € LF(R}), g € LL(R}),
and || f|lpw >0, |lgllg.@ > 0, then

pwll9llg.a-

(2.3) (Tf,q) / / H(z,y)f(x)g(y)dzdy > K|| f

If fe LE(Ry) and || fllpw > 0, then Tf € LE (R4) and

o0 th §X %
(2.4) IITfIIp,w={ I ( / Hiz,p)f dx) dy} S K7 fllpos
0

where both constant factors K and KP? are the best possible and inequalities (2.3)
and (2.4) are equivalent.

We prove only Theorem 2.2, since the proof of Theorem 2.1 is the similar.
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Proof of Theorem 2.2 By Holder’s inequality [22] and results of lemma we have,

(1 t+2tl 7>\) y%(l t+2t}; b)\)
23 wfo= [ [ HEH ) ) gy ey
€T

(1—t42or2)
7(1 t+2“ rA %
{/ / H CL‘ y 2th = f (x)dydx}
7(1 t+2th ER q
{/ / H(z,y)Y QpREE =T (y)dxdy}

1

~{ [ wore dm} [ y}q—Klfllp,wg

If (2.5) takes the form of equality, then there exist constants M and N, such that
they are not all zero and

-

q,w+

m%(l t+2tl 7>\) yg(l t+2th7 )\) .
wap( T) = NWQ‘I@/) a.e. in (0,00) x (0, 00).
Y x 1

Hence there exists a constant C, such that

M-t

)fp( ) = Ny(= T gl(y)=C a.e. in (0,00),
Without loss of generality, suppose that M # 0, we my get xp(l_t“‘#)_lfp(a:) =
C/(Mz) a.e. in (0,00) which contradicts f € LP (R,). Hence (2.6) takes a strict
inequality and we have (2.3).

If the constant factor K in (2.3) is not the best possible, then there exists
a positive constant K (with K > K), such that (2.3) is still valid if we replace
K by K. Setting f, and g, as; fo(z) = gn(z) = 0, for z € (0,1); fn(z) =

2tl—rX
rl

gt MZZM_%, gn(z) = 2~ 11 Qti‘ﬁﬂ_%ﬂ, for z € [1,00). then for n € N,
(2.6) (Tfn,gn) > Kl fullpwllgnllqs = nk.

Setting = £, then we obtain

Iy~ = [ h / " H(z,y) fo (@)gn (v)dady

o© e Sl 2orA 1 gy Zth ex
= H(:v,y):v T Ty S T dady

_1_, (/ 71+t72th Mjandg) dy
+/ (/ H(1, o) =25+ nlpda>d
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_ _M
=n H 1,0) 1+¢ +ﬂpda

0

In view of (2.6), we have nK < Jj,.
Secondly, by Fatou lemma, one has

~ 1
K < min —J,
n—oo N
2”1 9} Zth s\ 1
= min [/H 1,0)o =" ﬂpda—i—/ H(1,0)0 "= ﬂqda}
n—
St 2hosa L e Qg 2th—sA 1
< ,0)0 wdo + min H(l,0)o” "7 sk “rnado
| oo

It follows that K < K, which contradicts the fact that K < K. Hence the constant
K in (2.3) is the best possible.

For =z > 0,n € N, setting a bounded measurable function fn as

N n, if f(x)>n,
fu(w) = {( w),if & < f(z )
L f(r) <
by the condition of f € L? (R), there exists ng € N, such that for n > ng € N, 0 <
tL s p—1
i w(@) f@)Pdz < oo, Setting g, (y) =y~ =57 (fl/ (@,y) fu(2)d ) (5 <

r<n;n Z no) by Hoélder’s inequality [22], we have

n 2th s,\ -
o0 > / g )y
1/n

n n P
- <>< " e ) y
p(t— 272 -1 H(x n x| dxd
//n /l/n ( " (,y) fu(z)d ) Y

- / " H () Fo@)Ga (y) dedy
1/nJ1/n

n l/p n l/q
SK ( / / xp<“+2“r‘z”>1ﬁ<x>dx) ( / / yq“t““?i““yn(y)dy) :
1/n 1/n
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n
2tl—rA -~ Ztho-od a
P T PR (1) < /1/ y TG (y)dy < oc.
n

2.7) 0 <K”/n

1/n
For n — oo, if [~ y?(~ 2552 =150 (y)dy = oo, then we have (2.4); if 0 <
ISy Hzm 7)=154 (y)dy < oo, then by using (2.3), both (2.7) and (2.8) still
take the form of strict inequalities, and we have (2.4).

On the other hand, if inequality (2.4) holds, then by Holder’s inequality, we
have

(28) (Tf,g) //H 2,9) (2)g(y)dedy

= [(rr [Cems@an) (0 )
0
> {/ yp 2GE2) (/ H(x,y)f )dx) dy}p
0
2th—s\ %
{/ y O )‘1g(y)dy}
0

Hence by (2.4), we have (2.3), and inequalities (2.4) and (2.3) are equivalent.

If the constant factor in (2.4) is not the best possible, by the inequality (T'f, g) <
ITfllpwllgllqm we may get a contradiction that the constant factor in (2.4) is not
the best possible.

In the same way, (2.3) and (2.5) are equivalent and the constant factors are
the best possible.

Remarks. The results of this paper include many other conclusions which have
been published. For instance, in the following we suppose that the integrals in the
right of the following inequalities converge to some positive numbers, £ + 1 =1 |
and one omits the words that the constants factors are the best possible.

1) It is easy to see that for t =0,l=r,p > 1,r =s =2\ =4, H(z,y) =
2, the inequality (2.1) reduces to [9]

1
(z4ay)?(z+ay
oo o) 1
/0 /o (x+ay)2(m+ay)2f(x)g(y)dxdy
K Oo_p_lp d}p{ oo—q—lq d}q7
< {/Ox fP(x)dz /Oy 9 (y)dy

00 a+b [In(b/a)
K:/ dt — (b—+a)2[b—a *aTb} if a # b,
o (14 at)

2(1+at)? oz, if a=0.

where
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2) Setting t = 0,0 =r,p>1,H(z,y) = —2&9_ (X > 0), then we have [10]

(max{z,y})*

// @D e gy dedy

(max{z,y})>

r? 4+ §2 o /s s & A/ v
<z {/ aP 1=/ 1fp(x)dﬂc} {/ y (A 1gq(y)dy} :
0 0

3) Setting ¢ =0,l=rp> 1 H(z,y) = +y)lln§?r{1ya¥{my} A>0,aeR,p>
—1), then we have [11]

| In(z/y)|?
/ / (z + y)>—(max{z, y})* 5 f(@)g(y)dady

1 1
(k+ 2 A)p+1 * (k+ 2)ﬁ+1]

o0 v [ a
> {/ :vp(l_)‘/s)_lf”(x)da:} {/ yq(l—k/r)—lgq(y)dy} )
0 0

4) Setting t = 0,0l =7 =2,p > 1,H(z,y) = “‘“T Vy””/y(A > 0,8 > —1),
then we have [12]

/0"/ arctan® \/a:’\/y y)dady
0

17)‘+y

L(B+1)55, (77

2 ,8+1{ % = N2=1 gp (1) }’1’{ = =N g g }é
<35 T% /x et [ RO

5) Setting ¢t =0, =r,p> 1, H(z,y) = %,O <A< %, then we have
[13]

/ / (min{z, y})* f(@)g(y)dzdy

YRS

< {B (1—2A,(1+ s)A) B (1—2)\,(1+ i)A)}
X {/OOO xp(l—k/r)—lfp(x)dx}’l’ {/OOO ?/q(l_)\/s)_lgq(y)dy};.
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6) Setting t =0,l =r,1>p > 0,H(x,y) = ln(m/yy) a > 0, then we have
* In(x y
/ / / (x)g(y)dady

2 e o ;
ST

7) Setting
a)t=1l=r=pp>1,A=1H(z,y) = e aém{zay },0<a<min{%,%
then we have [15]

/ / |z —y|t- “mln{xa7y 3! f(x)g(y)dzdy

o2 ne) o2 ae) [ o] {[ o

bt=0,A=11l=p,p>1H(z,y) = 0<a<m1n{ }then
we have [15]

/ / lz — - Oémln{xa T f(x)g(y)dady

<[n (i) oG] [ e ([

8) Setting t=1,l=r=q¢A=1,p>1,H(z,y) = s a > 0, then [16]

max{z 5]
/ / L gty
max{z®, y*} TI9\Y) a8y

<o) a G ([ vom)

9) Setting t =1,l =r = p, Azl—a,p>1,H(w,y):%,a20, then
[17]

| gty < 2 [ x“f”(x)dat}; {r yangdy};

10) Settlng t=1,l=r=p,p>1, A\>2—min{p,q}, H(z,y) = n(w/”) , then
we have [18]

/ /oo S @)gtu)dedy

le—ylt= "mm{m"“y B




1 (p+A=2 g+ A=2\12[ /™ .., NN 3
<[)\B( P )} {/0 ' f (x)dx} {/0 y' g (y)dy}

1
(mo+y>)P >
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11) Setting t = a,l=r=p,1 >p >0, A\=af,2—p <2-¢q,H(z,y) =
then we have[19]

00 0o 1
/0 /0 Wf(z)g(y)dxdy

U (p+B—2 q+B-2\ [ [ @ f@)P 7 [ [ @ @), \*
>aB< p | q >{/0 glte(8-2) dm} {/0 ylta(p=2) dy}'
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