• 제목/요약/키워드: Hausdorff metric

검색결과 58건 처리시간 0.023초

NONLINEAR MAPPINGS IN METRIC AND HAUSDORFF SPACES AND THEIR COMMON FIXED POINT

  • Som, Tanmoy
    • Kyungpook Mathematical Journal
    • /
    • 제28권1호
    • /
    • pp.97-106
    • /
    • 1988
  • In the first section of this paper two common fixed point results for four nonlinear mappings which are pairwise commuting and only two of them being continuous have been given on a complete metric space and on a compact metric space respectively which generalize the results of Mukherjee [2] and Yeh [4]. Further two common fixed point theorems have been established for two finite families of non linear mappings, with only one family being continuous. In another section we extend Theorem 3 and Theorem 4 of Mukherjee [2] for common fixed point of four continuous mappings on a Hausdorff space and on a compact metric space respectively. In the same spaces, these two results have been further generalized for two finite families of continuous mappings.

  • PDF

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.457-467
    • /
    • 2011
  • In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.

MULTIFRACTAL ANALYSIS OF A GENERAL CODING SPACE

  • Baek, In Soo
    • 충청수학회지
    • /
    • 제19권4호
    • /
    • pp.357-364
    • /
    • 2006
  • We study Hausdorff and packing dimensions of subsets of a general coding space with a generalized ultra metric from a multifractal spectrum induced by a self-similar measure on a self-similar Cantor set using a function satisfying a H${\ddot{o}}$older condition.

  • PDF

LIPSCHITZ REGULARITY OF M-HARMONIC FUNCTIONS

  • Youssfi, E.H.
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.959-971
    • /
    • 1997
  • In the paper we introduce Hausdorff measures which are suitable or the study of Lipschitz regularity of M-harmonic function in the unit ball B in $C^n$. For an M-harmonic function h which satisfies certain integrability conditions, we show that there is an open set $\Omega$, whose Hausdorff content is arbitrarily small, such that h is Lipschitz smooth on $B \backslash \Omega$.

  • PDF

MULTIFRACTAL ANALYSIS OF A CODING SPACE OF THE CANTOR SET

  • Baek, In Soo
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2004
  • We study Hausdorff and packing dimensions of subsets of a coding space with an ultra metric from a multifractal spectrum induced by a self-similar measure on a Cantor set using a function satisfying a H$\ddot{o}$lder condition.

  • PDF

DIMENSIONALLY EQUIVALENT SPACES

  • Baek, In Soo
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.527-532
    • /
    • 2008
  • We compare a coding space which has an ultra metric with the unit interval which has an associated generalized dyadic expansion. The two spaces are not homeomorphic but dimensionally equivalent in the sense that the Hausdorff and packing dimensions of the corresponding distribution sets in the two spaces coincide.

  • PDF

SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

  • Baek, In-Soo
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1173-1183
    • /
    • 2017
  • We give some sufficient conditions for the null and infinite derivatives of the $Riesz-N{\acute{a}}gy-Tak{\acute{a}}cs$ (RNT) singular function. Using these conditions, we show that the Hausdorff dimension of the set of the infinite derivative points of the RNT singular function coincides with its packing dimension which is positive and less than 1 while the Hausdorff dimension of the non-differentiability set of the RNT singular function does not coincide with its packing dimension 1.