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Hausdorff Measure on Some Metric Space*

by Heung-Ki Kim
Dankook University, Seoul, Korea

In many contributions to the theory of Hausdorff measure, it has been the practice to place
certain restrictions on the spaces and the measure functions used. The purpose of this note is to
find conditions under which the restrictions may be relaxed. In (4], it was shown that a o-compact
set E in a metric space has p*(E)=0 for some ks H,

We first show that a g-precompact set E in a metric space has p*(E)=0 for some k in H using
the results which are derived from [1,4).

Finally we will show that there can be uncountable set K which has p*(K)=) for all ke H,.

Throughout this note, X will denote a metric space with metric p, We use H to denote the class
of function % defined for all t>0, but perhaps having the value +oo for some values of ¢, mono-
tonic increasing for £>>0, positive for £>>0 and continuous on the right for all £2>>0., We will use
H, for the subset of all £ of H with A(0) =0,

The Hausdorff A-measure u#*(E) of a set E in a metric space X, for a function ke H, is defined
in the following way.
For each >0 we let

pH(E)=inf ¥ h(S)
T sop

=1t
where the infimum being taken over all countable covering of E by open sets of diameter less than
or equal to §, and where

h(S) =k(diam(S;)), diam(S;) being the diameter of S;. Then ,u"(E):l}mp.;"(E) is an outer
-0
measure.
A metric space X is said to be precompact [5] if every sequence of points in X contains a Cauchy

sequence, and X is said to be g-precompact if X is the countable union of precompact sets. If X
is complete precompact space, X is necessarily compact.

Lemma 1. ((5])). A subset M of a metric space X is precompact (in the metric p of X) if and
only if, given any ¢>0, X contains a finite set BC X such that the distance from every point z=M
to some point y=B (in general, depending on e) does not exceed &,

In fact, M is precompact iff for every &0, it can be covered by a finite number of open balls
0.(z,), --+, 0.(z,) with radius e.

Theorem 2. The followings are equivalent
*E P AEYYe T2l 9% =89,
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(1) A set E has zero h-measure.
(2) There is a sequence {E;) of sets, )-j h(E;) is finite so that each point of E belongs to infi-
: izl

nitely many of the sets E;.
(3) There is a sequence {E;) of sets such that

ECD‘ ‘E,', i=1,2, - and diam(E;)—0, as i—co,
J=i

Proof. (1)=>(2) Let u*(E)=0. By the definition of g*, we can choose a sequence of sets (E;™
for each n>>1 with

Ec( E®, T h(E™)<1/2"
From thec rearranging the set E*, i, n=],2, - as a single sequence,
£ £ AEM<

and each point of E belongs to infinitely many of the sets E;™.
(2)=(3) From the hypothesis, it is possible to choose a sequence (E:;) of sets such that

EcC( Ej; i=1,2, -
j=i

and Z: h(diam(E;)) is finite.

Since A(8)>0 for any given §>0, diam(E;)>é for at most finite number of values of i. Hence
diam (E;) >0 as i—oo,

(3)=>(1) Since ECQ E; i=1,2, - and diam(E;)—Q as i—oco,
j=i
‘it is possible to choose a strictly increasing continuous Hausdorff measure function A& such that

; k(diam (E;)) <.
Let N be so large that ;Z‘:v h(diam(E;))<{oo, then

ECDN E;, diam(E;)< for i>N, iNh(E,») e,
j= 1=
Hence ps*(E) <Ce. Therefore p*(E)=0.
Lemma 3. Any o-precompact space X has a cover of sequence U;) of sets such that diam (U;)—0
as i—oo and XCJ U;, i=]1,2,--.
j=i
Proof. Let X be the countable union of precompact subset X, of X. If, for every &, <U*,

Uy, -+, Uiy is a countable cover of X by sets of diameter <{27". The diameter also converges
to zero since only finitely many diam(U*) are greater than a given >0,
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Cherefore, from the ‘union of the above covers for e=1/2, n&N, we can find a required cover of
equence <U;.

Theorem 4. Let E be a o-precompact set in a metric space X, Then there exists an h in H for
vhich p*(E)=0,

Proof. Let E={J E;, where cach set E; is a precompact subset of E, Put
i=1

X;=U E, i=1,2,
i=1

hen cach set X; is precompact,
chXZCX:;C"', and E= 'L:jl Xi.

‘or each i, the system of open spheres
S(x,1/0) for ze=X;
orms an open cover of the precompact set X; with diameter <{1/7.
Let
S(xi;,1/9), j=1,2,+, Ji

se a finite subcover of X; by such spheres. Let S;,S; -+ be an enumeration of these spheres in
:heir natural order, taking first whose associated with X;, then those associated with X, and so
m. Then

diam(Sy)<<2/i if k>J+J++ i
Now we can choose k£ to be a continuous and monotonic increasing function satisfying the conditions

R(0)=0, B(2/) = +dpt e +d)E i=1,2,3,

Now given any k>J;, there will be an 7 with

Ji+dot o+ i <lkL<d H o R,
ind with this value of i,

h(S8y) =h(diam(S,)) <A2/0) = (L + ot +J) 2<AR

Hence the series )E} h(S,) converges. But each point of E belongs to all sets X; from some point
k=1

onwards and so to infinitely many sets S,.
Thus from the above Theorem 2 and Lemma 3, we can know that u*(E)=0.

For an uncountable complete metric space, the following theorem was known in [4],

Theorem 5, Let X be an uncountable complete separable metric space. Then there is a compact
perfect subset E of X and a function h of H, with
0< g (C) <+ oo,

It is easy to show that the theorem 5 holds even if the compact perfect set is replaced the pre-
compact perfect set C. By the similar methods as in [4], the following theorems hold.

Theorem 6. If X is a complete separable metric space and p*(K)=0 for each hin H,, and each
precompact set K in X, then X is countable.



50 Heung-Ki Kim

Theorem 7. If K is a precompact set in a metric space X and p*(K)=0 for all h in H,, then
K is countable.

By the theorem 5, for an uncountable compact set K in a metric spacc X, there is a perfect
subset P of K and a function Ae=Hj such that 0<(p*(P)<-+ o0, '

Theorem 8. Let K be an uncountable set in a metric space X and C be a countable set such that
each open set containing C contains all points of K with at most a finite number of exceptions, then
A (K)=0 for all heH,.

Proof. Let & be any function of H, and let ¢>0, 6>0 be given. Since A(t)—0 as t—0, we can

choose a sequence {r,,r,, ---> of radii so that
2ri<h (=1,2,), X h(2r)<e/2,

Then the scquence of open spheres
S, ry, i=1,2,..., diesC
has a union covering C.
From the hypothesis, the points of K not covered by the union of open spheres can be enumerated

as a sequence <k, k&, --->, which might terminate or be empty.

New K is covered by the system of spheres
S(dy,r), S(dy,rs), -, SCky, 1), SChy,1y), -,

all of diameter less than 8, with
h(S(dy, 7)) +h(S(dy, 1))+ -+ h(S(ky, 7)) +h(S(ke, 12)) +-0 < 22111(271') <e.

Hence p;*(K)<e for any £>0.
Since h=H,, ¢>0 and 0 >0 are arbitrary, p*(K)=0.
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