LIPSCHITZ REGULARITY OF M-HARMONIC FUNCTIONS

E. H. Youssfi

ABSTRACT. In the paper we introduce Hausdorff measures which are suitable or the study of Lipschitz regularity of M-harmonic function in the unit ball B in \mathbb{C}^n . For an M-harmonic function h which satisfies certain integrability conditions, we show that there is an open set Ω , whose Hausdorff content is arbitrarily small, such that h is Lipschitz smooth on $B \setminus \Omega$.

1. Introduction and statement of the main results

Let B denote the open unit ball in \mathbb{C}^n and let $\mathcal{M} = \operatorname{Aut}(B)$ be the group of all biholomorphic selfmaps of B. We denote by ν the Lebesgue measure on B normalized so that $\nu(B) = 1$. For any real number s < 1 consider the probability measure

$$d
u_s(z):=rac{\Gamma(n+1-s)}{n!\Gamma(1-s)}rac{d
u(z)}{(1-|z|^2)^s}.$$

By [1] the limit of $d\nu_s$ as $s \to 1$ is $d\nu_1(\zeta) = d\sigma(\zeta)$, where σ is the rotation invariant probability measure on $S = \partial B$, the boundary of B. It is also well-known that the measure $d\tau(z) := (1 - |z|^2)^{n+1} d\nu(z)$ on B is invariant under the group \mathcal{M} .

For $z = |z| \eta \in B$, let φ_z denote the Möbius transformation exchanging z and the origin. This map is given [6] by

$$(1.1) \quad \varphi_z(w) = \frac{z - \langle w, \eta \rangle \eta - \sqrt{1 - |z|^2} (w - \langle w, \eta \rangle \eta)}{1 - \langle w, z \rangle}, \quad \text{ for } w \in B.$$

Received June 7, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 31B25; Secondary; 32A40.

Key words and phrases: Bergman metric, Invariant Lipschitz class, M-harmonic function.

CMI et URA 225, Université de Provence, 39 Rue F. Joliot-Curie, 13453 Marseille Cédex 13, France.

It is a well-known fact [4] that the function

$$\varrho(z,w) := |\varphi_z(w)|, \quad z, w \in B$$

defines a distance function on B, the pseudohyperbolic distance. This is a Möbius invariant distance on B; that is,

$$\varrho(\varphi(z), \varphi(w)) = \varrho(z, w), \text{ for all } \varphi \in \text{Aut}(B).$$

The corresponding balls are given by

$$E(z,r) = \{ w \in B : \varrho(z,w) < r \} = \varphi_z(rB)$$

for $z \in B$ and $0 < r \le 1$. These balls are called the pseudohyperbolic balls.

A function $f:B\to\mathbb{C}$ is called \mathcal{M} -harmonic or invariant harmonic on B, if f is continuous on B

$$(1.2) \ \ (f\circ\varphi)(0)=\int_S (f\circ\varphi)(r\zeta)\,d\sigma(\zeta), \ \ \text{for all } \varphi\in\mathcal{M} \ \text{and} \ 0\leq r<1.$$

The \mathcal{M} -harmonic functions are precisely those C^{∞} -functions which are annihilated by the Laplacian $\widetilde{\Delta}$ of the Bergman metric. This is given by

$$(\widetilde{\Delta}f)(z) = (\Delta(f \circ \varphi_z))(0), \text{ for } f \in C^2(B), z \in B.$$

The symbol ω will stand once and for all for a gauge function. This is a function $\omega:[0,1)\to[0,\infty)$ which is nondecreasing and vanishes at r=0. For $\Omega\subset B$ and $\varepsilon>0$, set

$$\mathcal{H}^{arepsilon}_{\omega,s}(\Omega) := rac{\Gamma(n+1-s)}{n!\Gamma(1-s)}\inf\left\{\sum_{j=1}^{\infty}(1-|z_j|^2)^{n+1-s}\omega(r_j)
ight\},$$

where the infimum is taken over all the pseudohyperbolic balls $\{E(z_j, r_j)\}_1^{\infty}$ such that $r_j \leq \varepsilon$ and $\Omega \subset \bigcup_{j=1}^{\infty} E(z_j, r_j)$. The corresponding Hausdorff measure of Ω is defined by

(1.3)
$$\mathcal{H}_{\omega,s}(\Omega) := \lim_{\varepsilon \to 0} \mathcal{H}_{\omega,s}^{\varepsilon}(\Omega).$$

For
$$0 < \varepsilon_0 < \frac{1}{2}$$
, let $\widehat{\mathcal{H}}_{\omega,s}(\Omega) := \mathcal{H}^{\varepsilon_0}_{\omega,s}(\Omega)$.

REMARK 1.1. For
$$d>0$$
 and $\omega(t)=t^d$, let
$$\mathcal{H}_d=\mathcal{H}_{\omega,0} \ \ \text{and} \ \ \widehat{\mathcal{H}}_d=\widehat{\mathcal{H}}_{\omega,0} \ \ \text{for} \ s=0,$$

$$\mathcal{H}_d'=\mathcal{H}_{\omega,0} \ \ \text{and} \ \ \widehat{\mathcal{H}}_d'=\widehat{\mathcal{H}}_{\omega,1} \ \ \text{for} \ s=1.$$

It should be noted that \mathcal{H}_d is essentially the d-dimentional Hausdorff measure on B constructed with respect to pseudohyperbolic balls. This is so due to the fact that $\nu(E(z,r^{\frac{d}{2n}})) \approx (1-|z|^2)^{r_c+1}r^d$ for $z \in B$ and $0 \le r \le 1/2$.

For $0 < \kappa \le 1$ we say that a function $f: \Omega \to \mathbb{C}$ is in the Möbius invariant Lipschitz class $\Gamma_{\kappa}(\Omega)$ if there exists a positive constant M such that

$$|f(z) - f(w)| \le M |\varphi_z(w)|^{\kappa}$$
, for all $z, w \in \Omega$.

In order to define the Möbius invariant Lipschitz class in the case of higher order smoothness $\kappa>1$, denote by $[\kappa]$ the greatest integer smaller than or equal to κ . We shall say that f is in the class $\Gamma_{\kappa}(\Omega)$ if there exist functions $\{f^{l\overline{m}}: l, m \in \mathbb{N}_0^n \text{ and } |l+m| \leq [\kappa]\}$ and a positive constant M such that $f^{0\overline{0}}=f$ and

$$\left|f^{u\overline{v}}(z) - \sum_{|l+m| < |\kappa| - |u+v|} \frac{f^{l\overline{m}}(w)}{(l+m)!} (\varphi_w(z))^l (\overline{\varphi_w(z)})^m \right| \leq M |\varphi_z(w)|^{\kappa - |u+v|},$$

for $z, w \in \Omega$ and $|u + v| \leq [\kappa]$. We have made use of the standard multi-index notations

$$|m| = m_1 + \dots + m_n, \quad m! = m_1! \dots ! m_n$$

 $z^m = z_1^{m_1} \dots z_n^{m_n} \text{ and } \overline{z} = (\overline{z}_1, \dots, \overline{z}_n)$

for
$$z=(z_1,\cdots,z_n)\in\mathbb{C}^n$$
 and $m=(m_1,\cdots,m_n)\in\mathbb{N}_0^n$.

By looking at the differential definition of the classical (euclidian) Lipschitz spaces [7] one can think of the functions $f^{l\overline{m}}$ as partial derivatives which are induced by the action of the group \mathcal{M} . This is indeed our motivation for defining the Möbius invariant Lipschitz space in this manner.

Finally define the quantity

$$(\widehat{Q}_{\kappa}f)(z) := \sum_{j=1}^{\kappa} \sum_{|u+v|=j} \left| \left(\frac{\partial^{u}}{\partial z^{u}} \frac{\partial^{v}}{\partial \bar{z}^{v}} \right) (f \circ \varphi_{z})(0) \right|, \quad z \in B.$$

Our main results are the following.

THEOREM A. Let ω be an arbitrary gauge function, $\kappa \in \mathbb{N}$. Let $s \leq 1$ and $p \geq 1$. If an M-harmonic function h on B satisfies

$$\||h|\|_{p,s}:=\left\{\int_{B}|(\widehat{Q}_{\kappa}h)(z)|^{p}\,d\nu_{s}(z)\right\}^{1/p}<\infty$$

then for each $\varepsilon > 0$ there exists an open subset $\Omega \subseteq B$ depending on all the parameters such that $\widehat{\mathcal{H}}_{\omega,s}(\Omega) < \varepsilon$ and $h \in \Gamma_{\kappa}(B \setminus \Omega)$.

THEOREM B. Let ω be an arbitrary gauge function, $\kappa \in \mathbb{N}$ and $p \geq 1$. For $0 \leq s \leq 1$ and an M-harmonic function h on B let

$$\|h\|_{p,s} := \begin{cases} \left\{ \int_{B} |h(z)|^{p} \log \frac{1}{1 - |z|^{2}} d\nu(z) \right\}^{1/p} & s = 0, \\ \left\{ \int_{B} |h(z)|^{p} d\nu_{s}(z) \right\}^{1/p}, & 0 < s < 1, \\ \lim_{t \to 1} \|h\|_{p,t} & s = 1. \end{cases}$$

If $||h||_{p,s} < \infty$ then for each $\varepsilon > 0$ there exists an open subset $\Omega \subseteq B$ depending on all the parameters such that $\widehat{\mathcal{H}}_{\omega,s}(\Omega) < \varepsilon$ and $h \in \Gamma_{\kappa}(B \setminus \Omega)$.

COROLLARY C. Let d > 0, $\kappa > 0$ and h be an M-harmonic function on B.

(1) If $p \ge 1$ and h satisffies the growth condition

$$\|h\|_{H^p}:=\sup_{\mathbf{0}\leq r\leq 1}\left\{\int_S|h(r\zeta)|^p\,d\sigma(\zeta)\right\}^{1/p}<\infty,$$

then for each $\varepsilon > 0$ there exists an open subset $\Omega \subseteq B$ such that $\widehat{\mathcal{H}}'_d(\Omega) < \varepsilon$ and $h \in \Gamma_\kappa(B \setminus \Omega)$.

(2) If p > 1 and h satisfies the growth condition

$$\|h\|_p=\left\{\int_B|h(w)|^p\,d
u(w)
ight\}^{1/p}<\infty,$$

then for each $\varepsilon > 0$ there exists an open subset $\Omega \subseteq B$ such that $\widehat{\mathcal{H}}_d(\Omega) < \varepsilon$ and $h \in \Gamma_\kappa(B \setminus \Omega)$.

2. Lipschitz regular points of M-harmonic functions

Let $\kappa \in \mathbb{N}$ and let f be a \mathcal{C}^{κ} -function on B. For $z \in B$ and $\alpha, \beta \in \mathbb{N}_0^n$, set

$$\widetilde{\frac{\partial^{\alpha}}{\partial z^{\alpha}}} \widetilde{\frac{\partial^{\beta}}{\partial \bar{z}^{\beta}}} f(z) = \frac{\partial^{\alpha}}{\partial z^{\alpha}} \frac{\partial^{\beta}}{\partial \bar{z}^{\beta}} (f \circ \varphi_{z})(0)$$

and for $\zeta \in \mathbb{C}^n$ let

(2.1)

$$D^{\kappa}f(z).\zeta = \sum_{|\alpha+\beta|=\kappa} \frac{\partial^{\alpha}}{\partial z^{\alpha}} \frac{\partial^{\beta}}{\partial \bar{z}^{\beta}} f(z) \zeta^{\alpha} \overline{\zeta}^{\beta}$$

(2.2)

$$\widetilde{D}^{\kappa}f(z).\zeta = \sum_{|lpha+eta|=\kappa} \widetilde{rac{\partial^{lpha}}{\partial z^{lpha}}} \widetilde{rac{\partial^{eta}}{\partial ar{z}^{eta}}} f(z) \zeta^{lpha} \overline{\zeta}^{eta} = D^{\kappa}(f \circ arphi_{oldsymbol{z}})(0).\zeta$$

Since $D^{\kappa}(f \circ U)(z).\zeta = (D^{\kappa}f)(Uz).U\zeta$ for all $U \in \mathcal{U}$, the group of all unitary transformations of \mathbb{C}^n . It follows that the quantities

$$|D^{\kappa}f(z)|:=\sup_{|\zeta|=1}|D^{\kappa}f(z).\zeta| \ ext{ and } \ \left|\widetilde{D}^{\kappa}f(z)
ight|:=\sup_{|\zeta|=1}\left|\widetilde{D}^{\kappa}f(z).\zeta
ight|$$

are unitarily invariant. But for $a,b \in B$ and $c = \varphi_a(b)$ we have $\varphi_a \circ \varphi_b = \varphi_c \circ U$ for some $U \in \mathcal{U}$. Thus the quantity $|\widetilde{D}^{\kappa} f(z)|$ is indeed Möbius invariant; that is,

$$(2.3) \quad \left|\widetilde{D}^{\kappa}(f\circ\varphi)(z)\right| = \left|(\widetilde{D}^{\kappa}f)(\varphi(z))\right|, \ \ \text{for all} \ \varphi\in\mathcal{M} \ \ \text{and} \ z\in B.$$

For $\kappa = 1$, the function $\left| \widetilde{D}^1 f(z) \right|$ was shown to play an interesting role in the study of M-harmonic functions even in the more general context of bounded symmetric domains. See [3] and [4] on this matter.

It is clear that for some C>0 independent of f and z we have (2.4)

$$C\sum_{|\alpha+\beta|=\kappa} \left| \frac{\partial^{\alpha}}{\partial z^{\alpha}} \frac{\partial^{\beta}}{\partial \bar{z}^{\beta}} f(z) \right| \leq |D^{\kappa} f(z)| \leq \frac{1}{C} \sum_{|\alpha+\beta|=\kappa} \left| \frac{\partial^{\alpha}}{\partial z^{\alpha}} \frac{\partial^{\beta}}{\partial \bar{z}^{\beta}} f(z) \right|$$

(2.5)

$$C\sum_{|\alpha+\beta|=\kappa}\left|\widetilde{\frac{\partial^{\alpha}}{\partial z^{\alpha}}}\frac{\widetilde{\partial^{\beta}}}{\partial\bar{z}^{\beta}}f(z)\right|\leq\left|\widetilde{D}^{\kappa}f(z)\right|\leq\frac{1}{C}\sum_{|\alpha+\beta|=\kappa}\left|\widetilde{\frac{\partial^{\alpha}}{\partial z^{\alpha}}}\frac{\widetilde{\partial^{\beta}}}{\partial\bar{z}^{\beta}}f(z)\right|$$

Finally define the quantity

$$(Q_{\kappa}f)(z) := \sum_{j=1}^{\kappa} \left| \widetilde{D}^j f(z) \right|, \quad z \in B.$$

This $Q_{\kappa}f$ is a Möbius invariant quantity and by (1.7), (2.4) and (2.5) we have

(2.6)
$$C\widehat{Q}_{\kappa}f \leq Q_{\kappa}f \leq \frac{1}{C}\widehat{Q}_{\kappa}f.$$

LEMMA 2.1. For $\kappa \in \mathbb{N}$ and $0 \leq s < 1$ there exist a positive constant C such that

$$\int_{B} \frac{|\widetilde{D}^{\kappa}h(z)|^{p}}{(1-|z|^{2})^{s}} d\nu(z) \leq C \left\{ \begin{array}{l} \int_{B} \frac{|h(z)|^{p}}{(1-|z|^{2})^{s}} d\nu(z), \quad s > 0 \\ \int_{B} |h(z)|^{p} \log \frac{1}{1-|z|^{2}} d\nu(z) \quad s = 0, \end{array} \right.$$

for all M-harmonic functions h on B.

Proof. For an M-harmonic function h on B, we have

$$h(z) = \int_{B} h(w) \frac{(1 - |z|^{2})^{n+1}}{|1 - \langle z, w \rangle|^{2(n+1)}} \, d\nu(w), \quad z \in B$$

from which it follows that

$$|\widetilde{D}^{\kappa}h(0)|^p \le \int_B |h(w)|^p \, d\nu(w).$$

Replacing h by $h \circ \varphi_z$ and applying the change of variable formula, we obtain from (2.7) that

$$(2.8) \qquad |\widetilde{D}^{\kappa}h(z)|^p \leq \int_B |h(w)|^p \frac{(1-|z|^2)^{n+1}}{|1-\langle z,w\rangle|^{2(n+1)}} \, d\nu(w),$$

so that by Fubini's theorem we see that

$$\int_{B} \frac{|\widetilde{D}^{\kappa}h(z)|^{p}}{(1-|z|^{2})^{s}} d\nu(z) \leq \int_{B} |h(w)|^{p} \int_{B} \frac{(1-|z|^{2})^{-s+n+1}}{|1-\langle z,w\rangle|^{2(n+1)}} \, d\nu(z) \, d\nu(w).$$

The lemma now follows from Proposition 1.4.10 in [6].

LEMMA 2.2. For $\kappa \in \mathbb{N}$ and $0 < \delta < 1$ there exists $C = C(\kappa, \delta) > 0$ such that

$$(2.9) \qquad (Q_{\kappa}h)(z) \leq \frac{C}{\varepsilon^{2n}} \int_{E(z,\varepsilon)} (Q_{\kappa}h)(w) \, d\tau(w), \quad z \in B,$$

for all $0 < \varepsilon < \delta$, for all M-harmonic functions h on B.

Proof. Due to the invariant property of $Q_{\kappa}h$ is is enough to establish (2.9) at the origin z=0. Using the mean value property, a little computing shows that for $j=1,\dots,\kappa$, we have

(2.10)
$$(D^{j}h)(0).\zeta = \frac{1}{c(\varepsilon)} \int_{\varepsilon B} (D^{j}h)(w).a(w,\zeta) d\tau(w)$$

where $a(w,\zeta) = \zeta - \langle w, \zeta \rangle w$ for $w \in \delta B, \zeta \in \mathbb{C}^n$ and

(2.11)
$$c(\varepsilon) := \frac{1}{2n} \int_0^{\varepsilon} \frac{t^{2n-1}}{(1-t^2)^{n+1}} dt \ge \varepsilon^{2n}.$$

Also we have

$$(\widetilde{D}^{j}h)(w).\zeta = (D^{j}h)(w).\zeta + \sum_{|\alpha+\beta| \leq j-1} a_{\alpha,\beta}(w,\zeta) \underbrace{\widetilde{\partial^{\alpha}}_{\partial z^{\alpha}} \underbrace{\partial^{\beta}}_{\partial \bar{z}^{\beta}} h(w) \zeta^{\alpha} \overline{\zeta}^{\beta}}_{}$$

for some functions $a_{\alpha,\beta}(w,\zeta)$ which are bounded for $(w,\zeta) \in \delta B \times S$ and such that $a_{\alpha,\beta}(w,.)$ is a polynomial in ζ and $\bar{\zeta}$ whose degree is at most $j-1-|\alpha+\beta|$. This fact combined with (2.4) and (2.5) implies that for some positive constant $C=C(j,\delta)$ independent of f and w we have

$$(2.12) \ \left| |(\widetilde{D}^{j}h)(w)| - |(D^{j}h)(w)| \right| \leq C \sum_{l=1}^{j-1} |D^{l}h)(w)|, \ \text{ for all } w \in \delta B.$$

Now an induction process invoking (2.12) implies that some C>0 independent of h we have

$$(2.13) \quad C(Q_jh)(w) \leq \sum_{l=j}^{j} |(D^lh)(w)| \leq \frac{1}{C}(Q_jh)(w), \quad \text{for all } w \in \delta B.$$

Putting together (2.10), (2.11) and (2.13), we obtain that

$$(2.14) \qquad |D^j h)(0)| \leq C \frac{1}{arepsilon^{2n}} \int_{arepsilon B} (Q_j h)(w) \, d au(w), \ \ ext{for all} \ \ 0 < arepsilon < \delta$$

so that by the invariant property of $Q_i h$ and τ we obtain

$$(2.15) \quad |\widetilde{D}^{j}h)(z)| \leq C \frac{1}{\varepsilon^{2n}} \int_{E(z,\varepsilon)} (Q_{j}h)(w) \tau(w), \quad \text{for all} \quad 0 < \varepsilon < \delta.$$

The lemma is now follows from (2.15).

For an M-harmonic function h let us call (h, ω, κ, p) -regular points those elements $z \in B$ for which there is a positive constant C such that

$$\sup_{\zeta \in E(z,r)} (r - |\varphi_{\zeta}(z)|)^{2n} (Q_{\kappa}h)^p(\zeta) \leq C\omega(r), \ \text{ for all } 0 < r < \delta.$$

Let $S = S(h, \omega, \kappa, p)$ be the set of all points in B which are not (h, ω, κ, p) -regular.

LEMMA 2.3. For each $0 < \delta < 1/2$ there is a positive integer $N = N(\delta)$ such that for any $\Omega \subset B$ and any covering $\mathcal{B} = \{E(z, r(z))\}_{z \in \Omega}$ by pseudohyperbolic balls with radii $r(z) < \delta$, there exist N subfamilies $\mathcal{B}_1, \dots, \mathcal{B}_N$ of \mathcal{B} such that each \mathcal{B}_j consists of pairwise disjoint pseudohyperbolic balls and Ω is covered by $\bigcup_{j=1}^N \mathcal{B}_j$.

Proof. Follows from the fact that (B, ϱ) is directionnally limitted in the sense of Federer. See ([2], p.150) or ([5], p. 89).

LEMMA 2.4. Let $p \geq 1$ and h be M-harmonic function on B. Let (ω, K, δ) be a triple consisting of a gauge function ω and two positive numbers K, δ . Then there is an open set $\Omega = \Omega(h, \omega, s, K, p, \delta) \subset B$ with the following properties.

- (1) Ω contains S.
- (2) There is a positive integer $N = N(\delta)$ which does not depend on K and there is a sequence of pseudohyperbolic balls $\{E(z_j, r_j)\}_1^{\infty}$ with $r_j < \delta$ with $z_j \in \Omega$ and points $\zeta_j \in E(z_j, r_j)$ such that

$$(2.16) (r_j - |\varphi_{\zeta_j}(z_j)|)^{2n} (\widehat{Q}_{\kappa}h)^p(\zeta_j) > K\omega(r_j).$$

and each point of Ω is in at most N of these balls.

Proof. Let D be a dense sequence in $S \times [0, \delta)$ and let O_K the set of all pairs (z, r) in $B \times [0, \delta)$ such that

$$\sup_{\zeta \in E(z,r)} (r - |\varphi_{\zeta}(z)|)^{2n} (\widehat{Q}_{\kappa}h)^p(\zeta) > K\omega(r), \text{ for some } 0 < r < \delta.$$

We set $\Omega := P(O_K)$ where $P_1(z,t) = z$ is the first coordinate projection from $\mathbb{C}^n \times \mathbb{R}$ onto \mathbb{C}^n . Then Ω is open and \mathcal{S} is clearly contained in Ω . If $(z,r) \in O_K$ then there exists a pair $(w,t) \in D \cap O_K$ and $|\varphi_z(\zeta)| < t$. This shows that the sequence \mathcal{B}^K consisting of those balls E(w,t) for which $(w,t) \in D_K := D \cap O_K$ forms a covering of Ω . Appealing to Lemma 2.3, we can find subsequences $\mathcal{B}_1^K, \dots, \mathcal{B}_N^K$ of \mathcal{B}^K such that each \mathcal{B}_j^K consists of pairwise disjoint pseudohyperbolic balls and Ω is covered by $\bigcup_{j=1}^N \mathcal{B}_j^K$. This completes the proof of the lemma. \square

LEMMA 2.5. Under the hypothesis of Lemma 2.4 if, in addition, h satisfies

$$\int_{B} (Q_{\kappa}h)^{p}(z) d\nu_{s}(z) < \infty \quad ext{for some } s \leq 1,$$

then for each $\varepsilon > 0$ there exist an open subset $\Omega \subseteq B$ that contains S and a positive constant C such that $\widehat{\mathcal{H}}_{\omega,s}(\Omega) < \varepsilon$ and

$$(2.17) \sup_{\zeta \in E(z,\rho)} (\rho - |\varphi_{\zeta}(z)|)^{2n} (Q_{\kappa}h)^p(\zeta) \leq C\omega(\rho), \text{ for all } 0 < \rho < \delta.$$

In particular, S is zero set for the Hausdorff measure $\mathcal{H}_{\omega,s}$.

Proof. Let $K, \delta > 0$ and let Ω and $E(z_j, r_j)$, be as in Lemma 2.4. Then the characteristic functions $\chi_{E(z_j, r_j)}$ satisfy

(2.18)
$$\sum_{1}^{\infty} \chi_{E(z_j,r_j)} \leq N < \infty.$$

Since for 0 < r < 1

$$\frac{1-r}{1+r}(1-|z|^2) \le 1-|w|^2 \le \frac{1+r}{1-r}(1-|z|^2) \text{ for } w \in E(z,r),$$

by virtue of Lemma 2.2 we see that

$$\sum_{1}^{\infty} (1 - |z_{j}|^{2})^{n+1-s} (r_{j} - |\varphi_{\zeta_{j}}(z_{j})|)^{2n} (Q_{\kappa}h)^{p} (\zeta_{j})$$

$$\leq C \sum_{1}^{\infty} (1 - |z_{j}|^{2})^{n+1-s} \int_{E(\zeta_{j}, r_{j} - |\varphi_{\zeta_{j}}(z_{j})|)} (Q_{\kappa}h)^{p} (w) d\tau(w)$$

$$\leq C \sum_{1}^{\infty} \left(\frac{1 + r_{j}}{1 - r_{j}}\right)^{n+1-s} \int_{E(z_{j}, r_{j})} \frac{(Q_{\kappa}h)^{p} (w)}{(1 - |w|^{2})^{s}} d\nu(w)$$

$$\leq CN \left(\frac{2 + \delta}{2 - \delta}\right)^{n+1-s} \int_{B} \frac{(Q_{\kappa}h)^{p} (w)}{(1 - |w|^{2})^{s}} d\nu(w).$$

This combined with (2.16) and (2.6) yields

$$\widehat{\mathcal{H}}_{\omega,s}(\Omega) \leq \frac{\Gamma(n+1-s)}{n!\Gamma(1-s)} \sum_{1}^{\infty} (1-|z_{j}|^{2})^{n+1-s} \omega(r_{j})$$

$$\leq C \frac{N}{K} \left(\frac{2+\delta}{2-\delta}\right)^{n+1-s} \frac{\Gamma(n+1-s)}{n!\Gamma(1-s)} \int_{B} \frac{(Q_{\kappa}h)^{p}(w)}{(1-|w|^{2})^{s}} d\nu(w)$$

$$= C \frac{N}{K} \left(\frac{2+\delta}{2-\delta}\right)^{n+1-s} \int_{B} (Q_{\kappa}h)^{p}(w) d\nu_{s}(w) \to 0, \text{ as } K \to \infty.$$

3. Proof of the main result

For $z \in B$ define the functions

(3.1)
$$h^{u\overline{v}}(z) := \frac{\partial^{|u+v|}}{\partial z^u \partial \overline{z}^v} h(z), \quad u, v \in \mathbb{N}_0^n.$$

LEMMA 3.1. For $\kappa \in \mathbb{N}$ and $0 < \delta < 1$ there exist a positive constant $C = C(\kappa, \delta)$ such that for each $\zeta \in B$ we have

$$\begin{vmatrix} h^{u\overline{v}}(z) - \sum_{|l+m| < [\kappa] - |u+v|} \frac{h^{l\overline{m}}(\zeta)}{(l+m)!} (\varphi_{\zeta}(z))^{l} (\overline{\varphi_{\zeta}(z)})^{m} \\ \leq C \frac{|\varphi_{\zeta}(z)|^{\kappa - |u+v|}}{(r - |\varphi_{\zeta}(z)|)^{2n}} \int_{E(z,r)} (Q_{\kappa}h)(w) d\tau(w) \end{aligned}$$

for all $z \in E(\zeta, r)$ with $0 < r < \delta$ and M-harmonic functions h on B.

Proof. First we assume that $\zeta=0$. This is no loss of generality due to invariant property of Q_{κ} and τ . Now Taylor's formula we see that for some positive constant C

$$\begin{vmatrix} h^{u\overline{v}}(z) - \sum_{|l+m| < [\kappa] - |u+v|} \frac{h^{l\overline{m}}(0)}{(l+m)!} z^{l} \overline{z}^{m} \\ \leq C|z|^{\kappa - |u+v|} \int_{0}^{1} (1-t)^{\kappa - 1} (Q_{\kappa}h)(tz) dt \end{vmatrix}$$

for $|z| \leq \delta$. This fact, combined with Lemma 2.2 with $\varepsilon = r - |z|$ yields

$$\begin{vmatrix} h^{u\overline{v}}(z) - \sum_{|l+m|<|\kappa|-|u+v|} \frac{h^{l\overline{m}}(0)}{(l+m)!} z^{l} \overline{z}^{m} \\ \leq C \frac{|z|^{\kappa-|u+v|}}{(r-|z|)^{2n}} \int_{0}^{1} \int_{E(tz,r-|z|)} (Q_{\kappa}h)(w) d\tau(w) dt, \quad z \in B. \end{aligned}$$

But for $w \in E(tz, r - |z|)$ and |z| < r we have

$$|\varphi_z(w)| \le |\varphi_{tz}(z)| + |\varphi_{tz}(w)| < \frac{(1-t)|z|}{1-t|z|^2} + r - |z| \le r.$$

Thus $E(tz, r - |z|) \subseteq E(z, r)$. From this the lemma now follows. \square

Proof of Theorem A. Let the parameters h, ω, s, κ, p be as the hypothesis of Theorem A. For $\varepsilon > 0$ let Ω be the open set constructed in Lemma 2.5. Fix $0 < r < \rho < \delta < 1/2$. If $z \in B \setminus \Omega$, then by virtue of 2.17 we have

$$(Q_{\kappa}h)^p(w) \le C \frac{\omega(\rho)}{(\rho-r)^{2n}}, \quad \text{for } w \in E(z,r),$$

from which it follows that

(3.2)
$$\int_{E(z,r)} (Q_{\kappa}h)(w) d\tau(w) \leq \tau(rB) \left\{ C \frac{\omega(\rho)}{(\rho-r)^{2n}} \right\}^{\frac{1}{p}}.$$

For $\zeta \in B$ with $|\varphi_z(\zeta)| < \frac{r}{2}$ then applying (3.2) and Lemma 3.1 shows that for some constant C > 0 depending on r, ρ and δ we have

$$\begin{split} \left| h^{u\overline{v}}(z) - \sum_{|l+m| < |\kappa| - |u+v|} \frac{h^{l\overline{m}}(\zeta)}{(l+m)!} (\varphi_{\zeta}(z))^{l} (\overline{\varphi_{\zeta}(z)})^{m} \right| \\ & \leq C \frac{|\varphi_{\zeta}(z)|^{\kappa - |u+v|}}{(r - |\varphi_{\zeta}(z)|)^{2n}} \\ & \leq C \frac{2^{2n}}{r^{2n}} |\varphi_{\zeta}(z)|^{\kappa - |u+v|}. \end{split}$$

Proof of Theorem B. By Lemma 2.1, (1.7) and (2.5) we see that the hypothesis of Theorem B implies $|||f|||_{p,s} < \infty$. Theorem B now follows from Theorem A.

Proof of Corollary C. Part (1) is a consequence of Theorem B, Remark 1.1 and the fact that $||h||_{H_p} = ||h||_{p,1}$. Part (2) follows from Theorem A, Remark 1.1 and the fact that if p > 1, then $||h||_{\frac{p}{s},0} \le C_s ||h||_p$, for 1 < s < p, where

$$C_s = \left\{ \int_B \left(\log \frac{1}{1 - |z|^2} \right)^{\frac{s}{s-1}} d\nu(z) \right\}^{\frac{s-1}{p}} < \infty.$$

References

- [1] F. Beatrous and J. Burbea, *Holomorphic Sobolev spaces on the ball*, Dissertationes Mathematicae (Rozprawy Matematyczne) **276** (1989).
- [2] H. Federer, Geometric measure theory, Berlin New York: Springer Verlag, 1969.
- [3] K. T. Hahn and E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions, J. Math. Anal. & Appl. 174 (1993).
- [4] K. T. Hahn and E. H. Youssfi, Besov spaces of M-harmonic functions on bounded symmetric domains, Math. Nachr. 162 (1993).
- [5] S. G. Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in \mathbb{C}^n , The Jour. of Geom. Anal. 1 (1991), 71–98.
- [6] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, 1980.

[7] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

C.M.I.

Université de Provence 39, Rue F. Joliot-Curie 13453 Marseille Cedex 13

E-mail: youssfi@protis.univ-mrs.fr