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LIPSCHITZ REGULARITY OF
M-HARMONIC FUNCTIONS

E. H. YOoussr1

ABSTRACT. In the paper we introduce Hausdorff measures which
are suitable or the study of Lipschitz regularity of M-harmonic func-
tion in the unit ball B in C™. For an M-harmonic function kA which
satisfies certain integrabilty conditions, we show that there is an
open set §2, whose Hausdorff content is arbitrarily small, such that
h is Lipschitz smooth on B\ Q2.

1. Introduction and statement of the main results

Let B denote the open unit ball in C"* and let M = Aut(B) be the
group of all biholomorphic selfmaps of B. We denote by v the Lebesgue
measure on B normalized so that v(B) = 1. For any real number s < 1
consider the probability measure

F(n+1-38) dv(z)

ws(z) = I FT =) =2

By [1] the limit of dv, as s — 1 is din(¢) = do(¢), where o is the
rotation invariant probability measure on S = 85, the boundary of B.
It is also well-known that the measure d7(z) := (1 — |2|?)"*'dv(z) on
B is invariant under the group M.

For z = |z|n € B, let ¢, denote the Mobius transformation exchang-
ing z and the origin. This map is given [6] by

(1.1) @, (w) = 2= {w,mn = 1\/_i<_w|2|>2(w = {w,nm) , forweB.
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It is a well-known fact [4] that the function
o(z,w) == |, (w)], z,weB

defines a distance function on B, the pseudohyperbolic distance. This
is a Mobius invariant distance on B; that is,

o(¢(2), o(w)) = o(z,w), for all ¢ € Aut(B).
The corresponding balls are given by
E(z,r) ={w € B: o(z,w) < r} = v,(rB)

for 2 € B and 0 < r < 1. These balls are called the pseudohyperbolic
balls.

A function f: B — C is called M-harmonic or invariant harmonic
on B, if f is continuous on B

(1.2) (foe)(0) = /S(focp)(rC) do(¢), forallop e Mand0<r <1.

The M-harmonic functions are precisely those C*°-functions which
are annihilated by the Laplacian A of the Bergman metric. This is
given by

(Af)(2) = (A(f 0 9.))(0), for f e CX(B),z ¢ B.

The symbol w will stand once and for all for a gauge function. This
is a function w : [0,1) — [0, 00) which is nondecreasing and vanishes at
r=20.For Q C Band e >0, set

'HEJ’S(Q) = %(’:—L%:L__—S)S)- inf Z(l — lzjlz)n-i-l—sw(rj) :

J=1

where the infimum is taken over all the pseudohyperbolic balls {F (25,
7;)}$° such that 7; < ¢ and Q C U521 E(25,7;). The corresponding
Hausdorff measure of €2 is defined by

(1.3) Ho,s(2) = lim H, ().

=0

For 0< gg < %, let ﬁw,s(g) = Higq(ﬂ)
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REMARK 1.1. For d > 0 and w(t) = t¢, let
Hq=Hopo and ’ﬁd = ﬁw,O for s == 0,
H, = H,o and ’;Q'd = ﬁw,l for s ==
It should be noted that Hq is essentially the d-dimentional Hausdorff
measure on B constructed with respect to pseudohyperbolic balls. This
is so due to the fact that v(E(z,r7)) = (1 —|2|?)"t1r? for z € B and
0<r<1/2.
For 0 < k < 1 we say that a function f : @ — C is in the Mobius

invariant Lipschitz class I'(Q2) if there exists a positive constant M
such that

|f(2) = f(w)| < Mlpz(w)|*, for all z,w € (2.
In order to define the Mébius invariant Lipschitz class in the case of
higher order smoothness x > 1, denote by [k] the greatest integer
smaller than or equal to k. We shall say that f is in the class I'.(Q2) if
there exist functions { f™ : I,m € Ng and |l +m] <! [«]} and a positive
constant M such that f%° = f and

— Im
Y (z) — Z F(w) (ﬂpw(Z))l(pr(Z))m < M|(pz(w)|n~—|u+v|’

|
[4m] < [r] = lutol (4 m)!

for z,w € Q and |u + v| < [k]. We have made use of the standard
multi-index notations

Im| =my + -+ mp, ml=my! -lm,
2™ =22 and Z = (Z1, - Zn)
for z = (21, - ,2n) € C" and m = (my,--- ,my,) € Nj.

By looking at the differential definition of the classical (euclidian)
Lipschitz spaces [7] one can think of the functions f' as partial deriva-
tives which are induced by the action of the group M. This is indeed
our motivation for defining the Mobius invariant Lipschitz space in this
manner.

Finally define the quantity

(Qnf) Z >k

J=1|utv|=j

(fowz)(ﬂ) , 2€B.

8*“ 82“

Our main results are the following.
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THEOREM A. Let w be an arbitrary gauge function, k € N. Let
s <1 and p > 1. If an M-harmonic function h on B satisfies

Al = {/ (@uh) ()P dun(z )} " e o

then for each € > 0 there exzsts an open subset ! C B depending on
all the parameters such that ., () <eand h e T (B\Q).

THEOREM B. Let w be an arbitrary gauge function, s € N and
p=>1. For 0 < s <1 and an M-harmonic function h on B Iet

[ { [ morios 2y wa) " s,

1Al := o {/ ]h(z)l”dus(z)}l/p, 0<s<1

| lmlnlpe =1

If ||Allp,s < oo then for each € > 0 there exists an open subset Q C B

depending on all the parameters such that ﬁwys(ﬂ) <eandh €T (B\

COROLLARY C. Letd > 0, k >> 0 and h be an M-harmonic function
on B.

(1) If p > 1 and h satistfies the growth condition

Aallar = o2, {/S Ih(r)IP dG(C)}#/p < 00,

then for each ¢ > 0 there exists an open subset 0 C B such
that H/ 2(Q) <eand h e T (B\ Q).
(2) If p > 1 and h satistfies the growth condition

i ={ [ |h<ur>|Pdu<w>}”P < o0,

then for each € > 0 there exists an open subset Q@ C B such
that Hy(Q) < € and h € I'.(B\ Q).



Lipschitz regularity of M-harmonic functions 963

2. Lipschitz regular points of M-harmonic functions

Let x € Nand let f be a C*-function on B. For z € Band o, 8 € Ng,
set

Py 5o 9
925559 (2) =+ Y 6Zﬁ(f ©z)10)
and for ¢ € C" let

(2.1)
Yol 6ﬁ
Df(2)¢= Y, F=5=f2)C°T
la+B|=r
(2.2)
~ fe el _
DG = Y o (2T = DN(F o 0)(0)C
ja+8|=x

Since D*(f o U)(2).¢ = (D*f)(Uz).U¢ for all U € U, the group of all
unitary transformations of C". It follows that the quantities

ID"1(2) = sup ID"f(2).¢| and |D*f(2)| = sup | D" (2)¢]

are unitarily invariant. But for a,b € Band ¢ = cpayb) we have p, 00, =

¢c o U for some U € U. Thus the quantity |D*f (2)| is indeed Mobius
invariant; that is,

(2.3) |D"(foy)(z)

= I(ﬁ”f)(cp(z))‘ , foralp e M and z € B.

For x = 1, the function {131 f (z)l was shown to play an interesting role

in the study of M-harmonic functions even in the more general context
of bounded symmetric domains. See [3] and [4] on this matter.
It is clear that for some C > 0 independent of f and z we have

(2.4)

g 9P ) 1 o 85
O Y |gaal@)| <RI g Y |t
la+Al=r jatBlex
(25)
. 1 oo 8
C|a4§|: 3”“ 825f 2)| < 'D f(z){ = C J(!‘{;l:- 9z 9z f(Z)l
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Finally define the quantity

2) 1= Z |7 £(2)

This Q. f is a Mobius invariant quantity and by (1.7), (2.4) and (2.5)
we have

(2.6) COWS < Quf < 50T

LeMMA 2.1. Fork € Nand 0 < s < 1 there exist a positive constant

C such that
. r@P
[ e, /B(l—m) W) 20
B (1= |2[*) /}h ”’log———— v dv(z) s=0,

for all M-harmonic functions h on B.

z € B.

Proof. For an M-harmonic function h on B, we have

_ 2\n+1
h(z) = /Bh(w)ll_(i Z’i;|>) Eezy dv(w), z€ B

from which 1t follows that

(27) IDR(O)? < /B () ? du(w)

Replacing h by ho ¢, and applying the change of variable formula, we
obtain from (2.7) that

n 1 B 'Z’ )n—+—1
@8 DHP < [ b “_<z anE L0}

so that by Fubini’s theorem we see that

]D" (1— Iz\2)—».s+n+1
Jy e < f e [ 2 e ) o

The lemma now follows from Proposition 1.4.10 in [6]. O
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LEMMA 2.2. For s € N and 0 < § < 1 there exists C = C(x,8) > 0
such that

C
29 @M@ < g [ @bwdrte, se B,

for all 0 < & < 4, for all M-harmonic functions h on B.

Proof. Due to the invariant property of Q,.A is is enough to estab-
lish (2.9) at the origin z = 0. Using the mean value property, a little
computing shows that for j =1,- - |k, we have

(2.10) (DJh e) / (D7 h)(w).a(w, {) dr(w)
where a(w,() = (- < w,{ > w for w € §B,( € C" and

1 € t2n 1 2,

Also we have

(D)= DM@+ Y aaslw, Qo L)t

la+8]<j—1

for some functions a, g(w, () which are bounded for (w,¢) € 6B x S
and such that aq g(w,.) is a polynomial in ¢ and { whose degree is at
most j — 1 — |a + fB|. This fact combined with (2.4) and (2.5) implies
that for some positive constant C' = C(3,5) independent of f and w
we have

(2.12) |{[(D?h)(w)| —|( CZW )(w)], for all w € §B.

Now an induction process invoking (2.12) implies that some C > 0
independent of & we have

J

(2.13) C(Q;h)(w Z (w)] < —(QJ )(w), for allw € 6B.
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Putting together (2.10), (2.11) and (2.13), we obtain that

(2.14) |D?R)(0)] < cgzin /EB(Q_jh)(w) dr(w), forall 0 <e<éd
so tha by the invariant property of Q;h and T we obtain

(2.15) | DIR)(2)] < c%/ (Q;h)(w)r(w), forall 0<e < 3.
€ E(z,e)

The lemma is now follows from (2.15). O

For an M-harmonic function % let us call (h,w, , p)-regular points
those elements z € B for which there is a positive constant C such that
sup (1 — ¢ (2))*(Qnh)P(C) < Cw(r), forall0<r <.
CEE(z,r)
Let S = S(h,w,k,p) be the set of all points in B which are not
(h,w, k, p)-regular.

LEMMA 2.3. For each 0 < § < 1/2 there is a positive integer N =
N () such that for any 2 C B and any covering B = {E(z,7(z))}.ca
by pseudohyperbolic balls with radii r(z) < &, there exist N subfam-
ilies By,--- ,Bn of B such that each B; consists of pairwise disjoint
pseudohyperbolic balls and 2 is covered by Uf’:l B;.

Proof. Follows from the fact that (B, p) is directionnally limitted in
the sense of Federer. See ([2], p.150) or ([5], p. 89). O

LEMMA 2.4. Let p > 1 and h be M-harmonic function on B. Let
(w, K,d) be a triple consisting of a gauge function w and two positive
numbers K, 8. Then there is an open set @ = Q(h,w,s,K,p,0) C B
with the following properties.

(1) € contains S.

(2) There is a positive integer N = N(§) which does not de-
pend on K and there is a sequence of pseudohyperbolic balls
{E(zj,r;)}{° withr; < ¢ with z; € Q and points {; € E(zj,7;)
such that

(2'16) (Tj - |‘PC;’ (ZJ)I)zn(@nh)p(Cj) > K“"(Tj)-
and each point of §) is in at most N of these balls.
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Proof. Let D be a dense sequence in S x [0,5) and let O the set
of all pairs (z,7) in B x [0,4) such that

sup (1 — lpc(2))¥(Qeh)P(C) > Kw(r), for some 0 < r < &,
CeE(z,7)

We set (2 := P(O) where Pi(z,t) = z is the first coordinate projection
from C™ x R onto C™. Then 2 is open and S is clearly contained in .
If (2,7) € Ok then there exists a pair (w,t) € DN Ok and |, (¢)] < t.
This shows that the sequence BX consisting of those balls E (w,t) for
which (w,t) € Dk := DN Ok forms a covering of Q. Appealing to
Lemma 2.3, we can find subsequences Bf ... ,BE of BK such that
each BJK consists of pairwise disjoint pseudohyperbolic balls and Q is

covered by UY_ | BK_ This completes the proof of the lemma. t
J=1%7

LeEMMA 2.5. Under the hypothesis of Lemma 2.4 if, in addition, h
satisfles

/(th)p(z) dvg(z) << oo for some s < 1,
B

then for each ¢ > 0 there exist an open subset Q C B that contains S
and a positive constant C such that He s() < € and

(217)  sup (p - loc(2))*(Qeh)P(C) < Cw(p), forall 0 < p< 6.
CEE(2,p)

In particular, S is zero set for the Hausdorff measure He s

Proof. Let K, > 0 and let  and E(z;,7;), be as in Lemma 2.4.
Then the characteristic functions x E(z;,r;) Satisfy

(218) ZXE(Zj,TjP <N < .
1

Sincefor 0 < r < 1

1 - 1
“a - ey <1 - ju? < 2T

—— — 2 [
T 1_7‘(1 |2]°) for w € E(z,r),
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by virtue of Lemma 2.2 we see that

D@ =) g = g, () )P (QuR)P(S)

1

<oy -lyyie (Qub)P () dr(w)

E{¢mi—lwe; (25D

WS ()7, B e

24+8\"7° [ (Quh)P(w)
< P ‘
ov(355) [

This combined with (2.16) and (2.6) yields

e o}

Rl < S S0 oy Pty
) 1
N (248\" "' °T(n+1-5) [ (Qeh)P(w)
= Cf (2 6) n!T(1 — s) /B (1 - |wl?)® dv(w)
n+l-s
= C% (H) -/;(Q,{h)p(w) dvs(w) — 0, as K — o<l>j

3. Proof of the main result

For z € B define the functions
uv alu-f—'vt 50
(3.1) h*%(z) == pyye h(z), u,veNj.
LEMMA 3.1. Fork € Nand0 < § < 1 there exist a positive constant
C = C(k,6) such that for each ( € B we have

im
R Y ) e

[I+m|<[x]-|uto]

e ‘n—|u+v|

v (2) w
N e ) /E(z,r)(Q“")( ) dr(w)

for all z € E(¢,r) with 0 < r < § and M-harmonic functions h on B.
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Proof. First we assume that ¢ = 0. This is no loss of generality due
to invariant property of Q. and 7. Now Taylor’s formula we see that
for some positive constant C

im
hui(z) _ Z h (O)

l
[IH+m|<[k]—iutv] (l + m)

< Clz|f vt / ']'(1 — )" "1 (Qnh)(t2) dt
0

for |2| < 6. This fact, combined with Lemma 2.2 with ¢ = r — |z| yields

o hm0)
huv( ) _ Z 'Z zm

el St T
|zln jutv|

(r— 2] 2n/ /E(tzr " (Qxh)(w) dr(w)dt, ze€ B.

But for w € E(tz,r — |z|) and |z| < r we have

<C

sl < eee(2) + sl < S8 o <

Thus E(tz,7 — |2]) C E(z,7). From this the lemma now follows. [

Proof of Theorem A. Let the parameters h,w, s, £, p be as the hy-
pothesis of Theorem A. For £ > 0 let Q be the open set constructed in
Lemma 2.5. Fix 0<r<p<d<1/2. Ifz€ B \ 2, then by virtue of
2.17 we have

(@rh)P(w) < C(pui(i%ﬂ’ for w e E(z,r),

from which it follows that

< 7(r —i(p) g
(3.2) /E(Z’T)(th)(w) dr(w) < 7(rB) {C(p_r)zn} :
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For ¢ € B with |p.(¢)| < § then applying (3.2) and Lemma 3.1 shows
that for some constant C' > 0 depending on r, p and § we have

Im
S OED DI o)

li+m|<[r]—|uto]

g ()|~ terl
(r = lpe(2)])?"

<Cﬁ| (z)|~—|u+vl
=t ¥¢ .

<C

O

Proof of Theorem B. By Lemma 2.1, (1.7) and {2.5) we see that the
hypothesis of Theorem B implies ||| f|||5,s < 00. Theorem B now follows
from Theorem A. O

Proof of Corollary C. Part (1) is a consequence of Theorem B, Re-
mark 1.1 and the fact that ||h||z, = ||h||p,1. Part (2) follows from The-
orem A, Remark 1.1 and the fact that if p > 1, then [|h| 2 o < CslAlly,
for 1 < s < p, where

c. - { [ (o) dy(z)} " e
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