MULTIFRACTAL ANALYSIS OF A GENERAL CODING SPACE

In Soo Baek*

Abstract

We study Hausdorff and packing dimensions of subsets of a general coding space with a generalized ultra metric from a multifractal spectrum induced by a self-similar measure on a selfsimilar Cantor set using a function satisfying a Hölder condition.

1. Introduction

Recently we obtained some results($[1,3]$) of relationship between members of a spectral class of a self-similar Cantor set($[1,3,7]$) using distribution sets $([1,3])$ of a frequency sequence. We also found some relationship $([4])$ between subsets of a Cantor set and their corresponding subsets of a coding space using a function satisfying a Hölder condition. Nowadays most of the fractals have been dealt in the Euclidean space for the discoveries of their Hausdorff and packing dimensions([7]) in the Euclidean space. However Hausdorff and packing dimensions can also be considered in a non-Euclidean metric space. We consider such an example as a coding space with an ultra metric and they give also many informations of structures of the space. Recently we([4]) studied a relationship between subsets in a coding space with an ultra metric and subsets in a Cantor set with the Euclidean metric. Combining the results $([1,3,4])$, we get some information of multifractal spectra of a coding space of the Cantor set. We note that the bridge to connect the two subsets which are in a self-similar Cantor set and in a coding space is a natural code function([2]).

In this paper using the relationship $([1,3])$ between members of spectral class of a self-similar Cantor set and their corresponding subsets in a coding space, we get the Hausdorff dimensions and packing dimensions of multifractal spectral members of a coding space.

[^0]
2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the similarities $f_{1}(x)=a x$ and $f_{2}(x)=b x+(1-b)$ on $I=[0,1]$ with $a>0$, $b>0$ and $1-(a+b)>0$. Let $I_{i_{1}, \cdots, i_{k}}=f_{i_{1}} \circ \cdots \circ f_{i_{k}}(I)$ where $i_{j} \in\{1,2\}$ and $1 \leq j \leq k$.

Let \mathbb{N} be the set of natural numbers and \mathbb{R} be the set of real numbers. We note that if $x \in F$, then there is $\sigma \in\{1,2\}^{\mathbb{N}}$ such that $\bigcap_{k=1}^{\infty} I_{\sigma \mid k}=$ $\{x\}$ (Here $\sigma \mid k=i_{1}, i_{2}, \cdots, i_{k}$ where $\sigma=i_{1}, i_{2}, \cdots, i_{k}, i_{k+1}, \cdots$). If $x \in F$ and $x \in I_{\sigma}$ where $\sigma \in\{1,2\}^{k}, c_{k}(x)$ denotes I_{σ} and $\left|c_{k}(x)\right|$ denotes the diameter of $c_{k}(x)$ for each $k=0,1,2, \cdots$. Let $p \in(0,1)$ and we denote γ_{p} a self-similar Borel probability measure on F satisfying $\gamma_{p}\left(I_{1}\right)=p(c f$. [7]). $\operatorname{dim}(E)$ denotes the Hausdorff dimension of E and $\operatorname{Dim}(E)$ denotes the packing dimension of $E([7])$. We note that $\operatorname{dim}(E) \leq \operatorname{Dim}(E)$ for every set $E([7])$. We denote $n_{1}(x \mid k)$ the number of times the digit 1 occurs in the first k places of $x=\sigma$ (cf. [1]).
For $q \in[0,1]$, we define lower(upper) distribution set $\underline{F}(r)(\bar{F}(r))$ containing the digit 1 in proportion q by

$$
\begin{aligned}
& \underline{F}(q)=\left\{x \in F: \liminf _{k \rightarrow \infty} \frac{n_{1}(x \mid k)}{k}=q\right\}, \\
& \bar{F}(q)=\left\{x \in F: \limsup _{k \rightarrow \infty} \frac{n_{1}(x \mid k)}{k}=q\right\} .
\end{aligned}
$$

We write $\underline{F}(q) \cap \bar{F}(q)=F(q)$ and call it a distribution set containing the digit 1 in proportion q.

We assume that $\{1,2\}^{\mathbb{N}}$ is an ultra metric space with the ultra metric ρ satisfying, for $(x, y) \in\{(x, y) \mid 0<x, y<1\}, \rho(\sigma, \sigma)=0$ and if $\sigma \neq \tau$ then $\rho(\sigma, \tau)=x^{n_{1}(x \mid k)} y^{k-n_{1}(x \mid k)}$ where $\sigma=i_{1} i_{2} \cdots i_{k} i_{k+1} \cdots$ and $\tau=i_{1} i_{2} \cdots i_{k} j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k=0,1,2 \cdots$. We will call $\{1,2\}^{\mathbb{N}}$ with such an ultra metric a coding space with a generalized ultra metric $\rho_{x, y}$.

If $a=b=r$ where $r \in(0,1)$, we will call the generalized ultra metric space by $\{1,2\}^{\mathbb{N}}$ with an ultra metric $\rho_{r, r}\left(\equiv \rho_{r}\right)$ a coding space with a uniform ultra metric ρ_{r}. In that case($([6]) \rho_{r}$ satisfies $\rho_{r}(\sigma, \sigma)=0$ and if $\sigma \neq \tau$ then $\rho_{r}(\sigma, \tau)=r^{n_{1}(x \mid k)} r^{k-n_{1}(x \mid k)}=r^{k}$ where $\sigma=i_{1} i_{2} \cdots i_{k} i_{k+1} \cdots$ and $\tau=i_{1} i_{2} \cdots i_{k} j_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k=0,1,2 \cdots$. In [4] we considered $\{1,2\}^{\mathbb{N}}$ with a uniform ultra metric $\rho_{\frac{1}{2}}$.

In the coding space we can define a probability measure Γ_{p} induced by a natural set function defined on the class of its cylinders.

We define a natural code function $f: F \longrightarrow\{1,2\}^{\mathbb{N}}$ such that $f(x)=$ σ with $\{x\}=\bigcap_{k=0}^{\infty} I_{\sigma \mid k}$ where $\sigma \in\{1,2\}^{\mathbb{N}}$ and F is the self-similar Cantor set with contraction ratios a, b. If we define $\Gamma_{p}\left((f(x) \mid n) \times\{1,2\}^{\mathbb{N}}\right)=$ $\gamma_{p}\left(I_{f(x) \mid n}\right)$ for all $x \in F$, then Γ_{p} is easily extended to a Borel probability measure on $\{1,2\}^{\mathbb{N}}$.

Before going into our main theorems, we need some lemmas to be studied. Before going into our lemmas, we need some definitions to be considered. Let $\Delta_{c}=\{(a, b) \mid 0<a, b<1, a+b=c\}$ where $0<c<2$. We define $s_{d}(a, b)$ to be a real number s satisfying $a^{s}+b^{s}=d$ for each $(a, b) \in \bigcup_{0<c<2} \Delta_{c}$ for each $d \in(0,2)$. The definition is well-defined from the following Lemma.

Lemma 2.1. There is a unique positive number t satisfying $a^{t}+b^{t}=d$ where $0<d<2$ for any $(a, b) \in \Delta_{c}$ for each $0<c<2$. That is, a positive number $s_{d}(a, b)$ is well-defined for any $0<d<2$ and any $(a, b) \in \Delta_{c}$ for each $0<c<2$. Further $\left\{s_{d}(a, b) \mid(a, b) \in \Delta_{c}\right\}=\left(0, l_{c, d}\right]$ where $l_{c, d}=\frac{\log \frac{d}{2}}{\log \frac{c}{2}}$.

Proof. It follows from that the function $p(t)=a^{t}+b^{t}$ is a strictly decreasing function for $t \in(0, \infty)$ having a range $(0,2)$. Further $l_{c, d}$ follows from the solution t of the equation $\left(\frac{c}{2}\right)^{t}+\left(\frac{c}{2}\right)^{t}=d$.

Lemma 2.2. $\left\{\left(a^{s_{d}(a, b)}, b^{s_{d}(a, b)}\right)\right\}=\left\{\left(a^{t}, b^{t}\right) \mid t>0\right\} \cap \Delta_{d}$ for each $(a, b) \in \Delta_{c}$ where $0<c<2$.

Proof. It follows from the uniqueness of the solution t of the equation $a^{t}+b^{t}=d$.

Lemma 2.3. The function $S_{d}: \Delta_{c} \longrightarrow \Delta_{d}$ such that $S_{d}(a, b)=$ $\left(a^{s_{d}(a, b)}, b^{s_{d}(a, b)}\right)$ is a bijection.

Proof. Let $(a, b) \in \Delta_{c}$. Then $a^{s_{d}(a, b)}+b^{s_{d}(a, b)}=d$ for some positive number $s_{d}(a, b)$. Suppose that $\left(a^{\prime}, b^{\prime}\right)(\neq(a, b)) \in \Delta_{c}$. Then $\left(a^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)}+$ $\left(b^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)}=d$ for some positive number $s_{d}\left(a^{\prime}, b^{\prime}\right)$. Then we have

$$
\left(a^{s_{d}(a, b)}, b^{s_{d}(a, b)}\right) \neq\left(\left(a^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)},\left(b^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)}\right)
$$

For, if we assume that

$$
\left(a^{s_{d}(a, b)}, b^{s_{d}(a, b)}\right)=\left(\left(a^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)},\left(b^{\prime}\right)^{s_{d}\left(a^{\prime}, b^{\prime}\right)}\right),
$$

we get $\frac{\log a^{\prime}}{\log a}=\frac{\log b^{\prime}}{\log b}$. If we put $\frac{\log a^{\prime}}{\log a}=\frac{\log b^{\prime}}{\log b}=\alpha$, then we have $\alpha \neq 1$ since $\left(a^{\prime}, b^{\prime}\right) \neq(a, b)$. Assuming that $\alpha>1$, we have a contradiction that $c=a^{\prime}+b^{\prime}=a^{\alpha}+b^{\alpha}<a+b=c$. Similarly we have a contradiction for $\alpha<1$. Hence S_{d} is an injection. By the above Lemma, we get that S_{d} is a surjection. For, $\left\{\left(a^{t}, b^{t}\right) \mid t>0\right\}=\left\{\left(x, x^{\alpha}\right) \mid 0<x<1\right\}$ since we have $b=a^{\alpha}$ for some $0<\alpha<\infty$ noting that $0<a, b<1$. Further we easily see that such α varies in $(0, \infty)$ as (a, b) varies in Δ_{c} for each $c \in(0,2)$.

Lemma 2.4. $\left\{\left(a^{s_{d}(a, b)}, b^{s_{d}(a, b)}\right) \mid(a, b) \in \Delta_{c}\right\}=\Delta_{d}$ for each $0<c, d<$ 2.

Proof. It follows from the above Lemma.

3. Main results

The following lemma gives the scaling properties of Hausdorff and packing dimensions of an image of a function satisfying a bi-Hölder condition.

Lemma 3.1. Let E be a metric space with a metric ρ. Let $f: F \longrightarrow E$ be a function satisfying a Hölder condition

$$
c_{1}|x-y|^{\alpha} \leq \rho(f(x), f(y)) \leq c_{2}|x-y|^{\alpha}
$$

for some constants c_{1}, c_{2} and each $x, y \in F$. Then $\operatorname{dim}_{H}(f(F))=$ $\frac{1}{\alpha} \operatorname{dim}_{H}(F)$ and $\operatorname{dim}_{p}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{p}(F)$.

Proof. $\operatorname{dim}_{H}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{H}(F)$ follows from Proposition 2.3 of [7]. $\operatorname{dim}_{p}(f(F))=\frac{1}{\alpha} \operatorname{dim}_{p}(F)$ follows from [4] or the similar arguments with the proof of Proposition 2.3 of [7].

The following theorem gives the close connection between the generalized ultra metric space and the self-similar Cantor set.

Theorem 3.2. Let $a+b=1$ for positive real numbers a, b. Consider an arbitrary real number $r \in(0,1)$. Then there there is $0<s<1$ such that $(r a)^{s}+(r b)^{s}=1$. Let $f: F_{r a, r b} \longrightarrow\{1,2\}^{\mathbb{N}}$ be a function such that $f(x)=\sigma$ with $\{x\}=\bigcap_{k=0}^{\infty} I_{\sigma \mid k}$ where $\sigma \in\{1,2\}^{\mathbb{N}}$ and $F_{r a, r b}$ is a self-similar Cantor set with contraction ratios ra, rb. Then it satisfies a Hölder condition

$$
|x-y|^{t} \leq \rho_{(r a)^{t},(r b)^{t}}(f(x), f(y)) \leq\left[\frac{1}{1-(r a+r b)}\right]^{t}|x-y|^{t}
$$

for each $x, y \in F_{\text {ra,rb }}$ for each positive number t. Hence

$$
\operatorname{dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}\right)=\operatorname{Dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}\right)=\frac{s}{t} .
$$

Proof. Considering a fundamental interval of $F_{r a, r b}$, we easily get

$$
|x-y| \leq \rho_{r a, r b}(f(x), f(y)) \leq\left[\frac{1}{1-(r a+r b)}\right]|x-y|
$$

for each $x, y \in F_{r a, r b}$. Hence we have for each positive real number t

$$
|x-y|^{t} \leq \rho_{(r a)^{t},(r b)^{t}}(f(x), f(y)) \leq\left[\frac{1}{1-(r a+r b)}\right]^{t}|x-y|^{t}
$$

for each $x, y \in F_{r a, r b}$. By Lemma 2.1, we get result from $\operatorname{dim}\left(F_{r a, r b}\right)=$ $\operatorname{Dim}\left(F_{r a, r b}\right)=s$ since $(r a)^{s}+(r b)^{s}=1$.

Corollary 3.3. ([4]) Let $f: F \longrightarrow\{1,2\}^{\mathbb{N}}$ be a function such that $f(x)=\sigma$ with $\{x\}=\bigcap_{k=0}^{\infty} I_{\sigma \mid k}$ where $\sigma \in\{1,2\}^{\mathbb{N}}$ and F is the classical Cantor ternary set. Then it satisfies a Hölder condition

$$
|x-y|^{\frac{\log 2}{\log 3}} \leq \rho_{\frac{1}{2}}(f(x), f(y)) \leq 2|x-y|^{\frac{\log 2}{\log 3}}
$$

for each $x, y \in F$. Hence $\operatorname{dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{\frac{1}{2}}\right)=\operatorname{Dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{\frac{1}{2}}\right)=1$.
Proof. We consider $a=b=\frac{1}{2}$ and $r=\frac{2}{3}$ in the above Lemma. Then $s=\frac{\log 2}{\log 3}$. Considering $t=\frac{\log 2}{\log 3}$, we have our result.

Example 3.4. Let $a=\frac{1}{3}$ and $b=\frac{2}{3}$. Consider $r=\frac{3}{4}$. Then the solution s of the equation $\left(\frac{1}{4}\right)^{s}+\left(\frac{1}{2}\right)^{s}=1$ is $\frac{\log \left(\frac{\sqrt{5}-1}{2}\right)}{\log \left(\frac{1}{2}\right)}$. Hence for $s=$ $\frac{\log \left(\frac{\sqrt{5}-1}{2}\right)}{\log \left(\frac{1}{2}\right)}$ we have

$$
|x-y|^{s} \leq \rho_{\frac{3-\sqrt{5}}{2}, \frac{\sqrt{5}-1}{2}}(f(x), f(y)) \leq\left[\frac{1}{1-(r a+r b)}\right]^{s}|x-y|^{s}
$$

for each $x, y \in F_{\frac{1}{4}, \frac{1}{2}}$. Hence we have

$$
\operatorname{dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{\frac{3-\sqrt{5}}{2}}, \frac{\sqrt{5}-1}{2}\right)=\operatorname{Dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{\frac{3-\sqrt{5}}{2}}, \frac{\sqrt{5}-1}{2}\right)=1 .
$$

Remark 3.5. From the above Example, we find $\frac{3-\sqrt{5}}{2}, \frac{\sqrt{5}-1}{2}$ from $a=\frac{1}{3}$ and $b=\frac{2}{3}$ and $r=\frac{3}{4}$.

Theorem 3.6. Each pair (x, y) of real numbers in the simplex $\Delta=$ $\{(x, y) \mid x, y>0, x+y=1\}$ has a proper $(a, b) \in \Delta$ with $0<r<1$ to give $(r a)^{s}+(r b)^{s}=1$ and $(r a)^{s}=x,(r b)^{s}=y$.

Proof. Consider a pair (x, y) of real numbers in the simplex $\Delta=$ $\{(x, y) \mid x, y>0, x+y=1\}$. For each $a \in(0,1) s_{a}(r)$ is a continuous function whose range is $(0,1)$ for $r \in(0,1)$ where $(r a)^{s_{a}(r)}+(r(1-$ $a))^{s_{a}(r)}=1$. Then for each $a \in(0,1)$ and a fixed $s \in(0,1)$ there exists $r \in(0,1)$ such that $(r a)^{s}+(r(1-a))^{s}=1$ by the intermediate value theorem. Noting $x=\frac{1}{1+\left(\frac{1-a}{a}\right)^{s}}$, we find $a \in(0,1)$ satisfying $x=\frac{1}{1+\left(\frac{1-a}{a}\right)^{s}}$ for the above fixed $s \in(0,1)$ using $r \in(0,1)$ properly.

The proof of the above theorem adopts a direct method whereas that of the following theorem does not.

THEOREM 3.7. Each pair (x, y) of real numbers with $0<x, y<1$ has a proper (a, b) in the simplex $\Delta=\{(a, b) \mid a, b>0, a+b=1\}$ with $0<r<1$ to give $(r a)^{s}+(r b)^{s}=1$ and $(r a)^{t}=x,(r b)^{t}=y$. Hence it gives $\operatorname{dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{x, y}\right)=\operatorname{Dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{x, y}\right)=\frac{s}{t}$.

Proof. From the above Theorem, for each $(z, w) \in \Delta$ we have $(a, b) \in$ Δ and $r \in(0,1)$ with $(r a)^{s}+(r b)^{s}=1$ to give $\left((r a)^{s},(r b)^{s}\right)=(z, w)$. Then the curves $C_{z, w}=\left\{\left((r a)^{t},(r b)^{t}\right) \mid t>0\right\}$ fill up the set $\{(x, y) \mid 0<$ $x, y<1\}$. That is

$$
\bigcup_{(z, w) \in \Delta} C_{z, w}=\{(x, y) \mid 0<x, y<1\}
$$

Putting $c=1$ and considering all $0<d<2$ in Lemma 2.4, we have the above fact. Theorem 3.2 gives the Hausdorff and packing dimension of $\{1,2\}^{\mathbb{N}}, \rho_{x, y}$.

REmARK 3.8. If $(x, y) \rightarrow(1,1)$ where $(x, y) \in\{(x, y) \mid 0<x, y<1\}$, then we see that $\operatorname{dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{x, y}\right)=\operatorname{Dim}\left(\{1,2\}^{\mathbb{N}}, \rho_{x, y}\right) \rightarrow \infty$. For, if $(x, y) \rightarrow(1,1)$ where $(x, y) \in\{(x, y) \mid 0<x, y<1\}$ then t should approach to 0 where $(r a)^{t}=x,(r b)^{t}=y$ for some $a, b \in \Delta$. Hence the Hausdorff and packing dimension $\frac{s}{t} \rightarrow \infty$ for a fixed positive value s which is derived from fixed a, b.

Corollary 3.9. If $G \subset\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}$, then $\operatorname{dim}(G)=\frac{\operatorname{dim}\left(f^{-1}(G)\right)}{t}$, where $f: F_{r a, r b} \longrightarrow\{1,2\}^{\mathbb{N}}$.

Proof. We note that f is a bijection. It follows from Lemma 3.1 and Theorem 3.2.

Corollary 3.10. If $G \subset\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}$, then

$$
\operatorname{Dim}(G)=\frac{\operatorname{Dim}\left(f^{-1}(G)\right)}{t}
$$

where $f: F_{r a, r b} \longrightarrow\{1,2\}^{\mathbb{N}}$.
Proof. We note that f is a bijection. It follows from Lemma 3.1 and Theorem 3.2.

Proposition 3.11. In $F_{r a, r b}$, for a distribution set $F(q)$ with a lower distribution set $\underline{F}(q)$ where $q \in[0,1]$,

$$
\operatorname{dim}(\underline{F}(q))=\operatorname{dim}(F(q))=\operatorname{Dim}(F(q))=\frac{q \log q+(1-q) \log (1-q)}{q \log r a+(1-q) \log r b} .
$$

Proof. We note that
$\operatorname{dim}(\underline{F}(q))=\operatorname{dim}(F(q))=\operatorname{Dim}(F(q))=\frac{q \log q+(1-q) \log (1-q)}{q \log a+(1-q) \log b}$
([1, 3]) for a self-similar Cantor set with contraction ratios a, b. It follows from the above with contraction ratios $r a, r b$.

Corollary 3.12. In $F_{r a, r b}$, for each $q \in[0,1]$ and $f: F_{r a, r b} \longrightarrow$ $\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}$,

$$
\begin{aligned}
\operatorname{dim}(f(\underline{F}(q))) & =\operatorname{dim}(f(F(q)))=\operatorname{Dim}(f(F(q))) \\
& =\frac{q \log q+(1-q) \log (1-q)}{t q \log r a+t(1-q) \log r b}
\end{aligned}
$$

Proof. It follows from the above Proposition and Corollaries.
Remark 3.13. In the above Corollary, we see that in $\{1,2\}^{\mathbb{N}}, \rho_{(r a)^{t},(r b)^{t}}$,

$$
\operatorname{dim}\left(f\left(F\left((r a)^{s}\right)\right)\right)=\operatorname{Dim}\left(f\left(F\left((r a)^{s}\right)\right)\right)=\frac{s}{t}
$$

for s satisfying $(r a)^{s}+(r b)^{s}=1$. We note that $\gamma_{(r a)^{s}}\left(F\left((r a)^{s}\right)\right)=1>0$ by the strong law of large numbers. Hence $\Gamma_{(r a)^{s}}\left(f\left(F\left((r a)^{s}\right)\right)\right)=1$.

Remark 3.14. Let s satisfy $(r a)^{s}+(r b)^{s}=1$. We clearly see that $\Gamma_{(r a)^{s}}(f(F(q)))=0$ for all $q\left(\neq(r a)^{s}\right) \in[0,1]$. We note that $\{f(F(q))$: $q \in[0,1]\}$ forms a multifractal spectrum of a coding space $\{1,2\}^{\mathbb{N}}$ with a non-Euclidean metric $\rho_{(r a)^{t},(r b)^{t}}$ giving for its members

$$
\operatorname{dim}(f(F(q)))=\operatorname{Dim}(f(F(q)))=\frac{q \log q+(1-q) \log (1-q)}{t q \log r a+t(1-q) \log r b} .
$$

Example 3.15. Let s satisfy $(r a)^{s}+(r b)^{s}=1$. Let

$$
E=\cup_{q\left(\neq(r a)^{s}\right) \in[0,1]} f(F(q)) .
$$

We see that $\Gamma_{(r a)^{s}}(E)=0$ since $\Gamma_{(r a)^{s}}\left(f\left(F\left((r a)^{s}\right)\right)\right)=1$ and $\Gamma_{(r a)^{s}}\left(\{1,2\}^{\mathbb{N}}\right)$ $=1$. We note that $\operatorname{dim}(E)=\operatorname{Dim}(E)=\frac{s}{t}$ without the condition that $\Gamma_{(r a)^{s}}(E)>0$. It follows from that $\operatorname{dim}(E) \geq \sup _{q\left(\neq(r a)^{s}\right) \in[0,1]} \operatorname{dim}(f(F(q)))$ by monotonicity and
$\sup _{q\left(\neq(r a)^{s}\right) \in[0,1]} \operatorname{dim}(f(F(q)))=\sup _{q\left(\neq(r a)^{s}\right) \in[0,1]} \frac{q \log q+(1-q) \log (1-q)}{t q \log r a+t(1-q) \log r b}=\frac{s}{t}$.
Similarly it holds for packing case.

References

[1] H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32(2) (1992), 149-152.
[2] I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26(2) (2001), 553-558.
[3] I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292(1) (2004), 294-302.
[4] I. S. Baek, Multifractal analysis of a coding space of the Cantor set, KangweonKyungki Mathematical Journal 12(1) (2004),1-5.
[5] C. D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. \& Math. Sci. 11(4) (1988), 643-650.
[6] G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer Verlag, 1990.
[7] K. J. Falconer, The Fractal Geometry, John Wiley \& Sons, 1990.
*
Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Republic of Korea
E-mail: isbaek@pufs.ac.kr

[^0]: Received October 23, 2006.
 2000 Mathematics Subject Classification: Primary 28A78. Secondary 8A80.
 Key words and phrases: Hausdorff dimension, packing dimension, coding space .

