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MULTIFRACTAL ANALYSIS OF A GENERAL CODING
SPACE

IN Soo BAEK*

ABSTRACT. We study Hausdorff and packing dimensions of subsets
of a general coding space with a generalized ultra metric from a
multifractal spectrum induced by a self-similar measure on a self-
similar Cantor set using a function satisfying a Holder condition.

1. Introduction

Recently we obtained some results([1, 3]) of relationship between
members of a spectral class of a self-similar Cantor set([1, 3, 7]) using
distribution sets([1, 3]) of a frequency sequence. We also found some
relationship([4]) between subsets of a Cantor set and their correspond-
ing subsets of a coding space using a function satisfying a Holder con-
dition. Nowadays most of the fractals have been dealt in the Euclidean
space for the discoveries of their Hausdorff and packing dimensions([7])
in the Euclidean space. However Hausdorff and packing dimensions can
also be considered in a non-Euclidean metric space. We consider such
an example as a coding space with an ultra metric and they give also
many informations of structures of the space. Recently we([4]) studied
a relationship between subsets in a coding space with an ultra metric
and subsets in a Cantor set with the Euclidean metric. Combining the
results([1, 3, 4]), we get some information of multifractal spectra of a
coding space of the Cantor set. We note that the bridge to connect the
two subsets which are in a self-similar Cantor set and in a coding space
is a natural code function([2]).

In this paper using the relationship([1, 3]) between members of spec-
tral class of a self-similar Cantor set and their corresponding subsets in a
coding space, we get the Hausdorff dimensions and packing dimensions
of multifractal spectral members of a coding space.
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2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the
similarities fi(x) = ax and fa(z) = bz + (1 —b) on I = [0,1] with a > 0,
b>0and 1—(a+b) > 0. Let ;... ;, = fiy0---o fi, (I) where i; € {1,2}
and 1 <j <k.

Let N be the set of natural numbers and R be the set of real numbers.
We note that if 2 € F, then there is o € {1,2}" such that (32, I, =

{z} (Here olk = i1,ia, -+ ,ix, where 0 = 11,49, , ik, i1, ). fx € F
and x € I, where o € {1,2}*, ¢ (z) denotes I, and |cx ()| denotes the
diameter of ¢i(x) for each k = 0,1,2,---. Let p € (0,1) and we denote

7vp @ self-similar Borel probability measure on F satisfying ~,(I1) = p(cf.
[7]). dim(F) denotes the Hausdorff dimension of E' and Dim(E) denotes
the packing dimension of E([7]). We note that dim(F) < Dim(E) for
every set F([7]). We denote ni(z|k) the number of times the digit 1
occurs in the first k places of x = o(cf. [1]).

For ¢ € [0,1], we define lower(upper) distribution set F(r)(F(r)) con-
taining the digit 1 in proportion g by

k
F(q)={z e F: hgggéfnl(gw =q},

F(q) = {x € F : limsup nl(?k)
k—o0

=q}.

We write F(¢) N F(q) = F(q) and call it a distribution set containing
the digit 1 in proportion q.

We assume that {1,2}" is an ultra metric space with the ultra met-
ric p satisfying, for (z,y) € {(z,y)|0 < z,y < 1}, p(o,0) = 0 and if
o # 7 then p(o,7) = 2™ @k yk=m @k where o = dyig - igippy --- and
T =118 - igJk+1 - - - where igy1 # jpy1 for some k =0,1,2---. We will
call {1,2}Y with such an ultra metric a coding space with a generalized
ultra metric pg .

If a =b=r where r € (0,1), we will call the generalized ultra metric
space by {1,2} with an ultra metric p,,(= p.) a coding space with a
uniform ultra metric p,. In that case(([6]) p, satisfies pr(o,0) = 0 and if
o # 7 then p,(o,7) = pra(lk) pk—ni(zlk) = 1k where o = iyis - - gl
and 7 = i1ig - - - igJgr1 - - - where igyq # jr4q for some k=0,1,2---. In
[4] we considered {1,2} with a uniform ultra metric p 1
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In the coding space we can define a probability measure I';, induced
by a natural set function defined on the class of its cylinders.

We define a natural code function f : F — {1,2}" such that f(z) =
o with {z} = (32, Iy, where o € {1,2}" and F is the self-similar Can-
tor set with contraction ratios a, b. If we define T',((f(x)|n) x {1,2}1Y) =
Yp(Lf(z)|n) for all z € F', then Iy, is easily extended to a Borel probability
measure on {1, 2},

Before going into our main theorems, we need some lemmas to be
studied. Before going into our lemmas, we need some definitions to be
considered. Let A, = {(a,b)|0 < a,b < 1,a+b = ¢} where 0 < ¢ < 2.
We define s4(a,b) to be a real number s satisfying a® 4+ b* = d for each
(a,0) € Upceen Ac for each d € (0,2). The definition is well-defined
from the following Lemma.

LEMMA 2.1. There is a unique positive number t satisfying a' +b* = d
where 0 < d < 2 for any (a,b) € A, for each 0 < ¢ < 2. That is,
a positive number sq(a,b) is well-defined for any 0 < d < 2 and any
(a,b) € A. for each 0 < ¢ < 2. Further {s4(a,b)|(a,b) € Ac} = (0,14

where [, q = Tog

Proof. Tt follows from that the function p(t) = a' + b’ is a strictly
decreasing function for ¢t € (0,00) having a range (0,2). Further .4

follows from the solution ¢ of the equation () + (5)' =d O

2

LEMMA 2.2. {(a®¢(@b) psal@b)} = [(atbt)|t > 0} N Ay for each
(a,b) € A, where 0 < ¢ < 2.

Proof. 1t follows from the uniqueness of the solution ¢ of the equation
al + bt =d. O
LEMMA 2.3. The function Sy : A. — Ay such that Sy(a,b) =

(asa(@b) psalab)y js o bijection.

Proof. Let (a,b) € A.. Then a®¢(®b) 4 p%a(@b) = d for some positive
number s4(a,b). Suppose that (a’,b')(# (a,b)) € A.. Then (a’)%(@"¥) 4
(b')a(@'Y) = d for some positive number sq(a’,¥’). Then we have

(asd(a,b)7 bsd(a,b)) 7& ((a/)sd((z’717’)7 (b/)sd(a’,b’)).
For, if we assume that

(asd(a,b), bsd(a,b)) _ ((al)sd(a’,b’)’ (b/)sd(a’,b’))’
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loga’ _ logl’ loga’” _ logt/
loga = logb* loga — logb
since (a’,V) # (a,b). Assuming that o > 1, we have a contradiction
that c = a’ +b = a® +b* < a+b = c. Similarly we have a contradiction
for o < 1. Hence Sy is an injection. By the above Lemma, we get that
Sy is a surjection. For, {(a’,b")|t > 0} = {(x,2%)|0 < z < 1} since we
have b = a® for some 0 < o < oo noting that 0 < a,b < 1. Further
we easily see that such « varies in (0,00) as (a,b) varies in A, for each
c e (0,2). O

LEMMA 2.4. {(a®(@) psa(@b))|(a,b) € A.} = Ay for each 0 < ¢,d <

we get If we put = «, then we have a # 1

2.

Proof. 1t follows from the above Lemma. O

3. Main results

The following lemma gives the scaling properties of Hausdorff and
packing dimensions of an image of a function satisfying a bi-Hélder con-
dition.

LEMMA 3.1. Let E be a metric space with a metricp. Let f : FF — E
be a function satisfying a Holder condition

alr —y|* < p(f(), f(y) < 2l —y|?

for some constants ci,co and each x,y € F. Then dimy(f(F)) =
L dimy (F) and dim,(f(F)) = 1 dim,(F).

Proof. dimg(f(F)) = édimH(F) follows from Proposition 2.3 of [7].
dim,(f(F)) = édimp(F ) follows from [4] or the similar arguments with
the proof of Proposition 2.3 of [7]. O

The following theorem gives the close connection between the gener-
alized ultra metric space and the self-similar Cantor set.

THEOREM 3.2. Let a+b = 1 for positive real numbers a,b. Consider
an arbitrary real number r € (0,1). Then there there is 0 < s < 1 such
that (ra)® + (rb)® = 1. Let f : From — {1,2} be a function such
that f(z) = o with {a} = ;2o Iy, where o € {1,2} and F,q,4 is a
self-similar Cantor set with contraction ratios ra,rb. Then it satisfies a
Holder condition

o= < a0 @), S ) < [ o =l
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for each x,y € F,q 4, for each positive number t. Hence
s

dlm({lv Q}Na p(ra)t,(rb)t) = Dlm({17 2}Na p(ra)t,(rb)t) = E

Proof. Considering a fundamental interval of F, 4, we easily get

‘.%' — y\ < pra,rb(f(x)7f(y)) < [1_(7,2_’_7,())

for each x,y € Fy 4. Hence we have for each positive real number ¢

1 t t
1- (ra—l—rb)] [z =l

Iz =yl

"T - y|t < P(ra)t,(rb)t (f(ﬂ?), f(y)) < [

for each x,y € F,q . By Lemma 2.1, we get result from dim(Fra,rb) =
Dim(Fra,rb) = s since (ra)s + (rb)s -1 -

COROLLARY 3.3. ([4]) Let f : F — {1,2}" be a function such that
f(x) = o with {z} = ;2 Ly, where o € {1,2}" and F is the classical
Cantor ternary set. Then it satisfies a Holder condition

log? log2
|z —y[e3 < pi(f(@), f(y)) < 2lw —y[1os3

for each x,y € F. Hence dim({1,2}", p1) = Dim({1,2}",p1) = 1.
2 2

Proof. We consider a = b = % and r = % in the above Lemma. Then
s = ﬁgg Considering t = {Zgg, we have our result. O
EXAMPLE 3.4. Let a = % and b = % Consider r = %. Then the
V5-1
solution s of the equation (%)* + (3)* =1 is %. Hence for s =
2
log(51)
g (1) we have
1
_ S < . - - < . _ S
|ZIJ y‘ —p-i—zxfo’\/sz—l(f(x)af(y)) = [1—(T6L+T‘b)] "T y|

for each z,y € F1 1. Hence we have
472

dlm({L 2}N7p3—\/37\/5—1) = Dim({172}N7103—\/5’\/5—1) =1

2 2 2 2

REMARK 3.5. From the above Example, we find 372‘/5, \/5271 from
3

_ 1 — 2 _ 3
a—Bandb—3andr—4.

THEOREM 3.6. Each pair (z,y) of real numbers in the simplex A =
{(z,y)|z,y > 0,2 +y = 1} has a proper (a,b) € A with 0 < r < 1 to
give (ra)® + (rb)* = 1 and (ra)® = z, (rb)* = y.
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Proof. Consider a pair (z,y) of real numbers in the simplex A =
{(z,y)|z,y > 0,2 +y = 1}. For each a € (0,1) s,(r) is a continuous
function whose range is (0,1) for » € (0,1) where (ra)*() 4 (r(1 —
a))®(") = 1. Then for each a € (0,1) and a fixed s € (0,1) there exists
r € (0,1) such that (ra)® + (r(1 — a))® = 1 by the intermediate value

. 1 . . . 1
theorem. Noting x = Trpiays We find a € (0, 1) satisfying x = ey

a

for the above fixed s € (0,a1) using r € (0, 1) properly. O

The proof of the above theorem adopts a direct method whereas that
of the following theorem does not.

THEOREM 3.7. Each pair (x,y) of real numbers with 0 < z,y < 1
has a proper (a,b) in the simplex A = {(a,b)|a,b > 0,a +b = 1} with
0 <r <1 togive (ra)®+ (rb)* = 1 and (ra)! = z, (rb)! = y. Hence it
gives dim({1,2}", p, ) = Dim({1,2}", p ) = 2.

Proof. From the above Theorem, for each (z,w) € A we have (a,b) €
A and r € (0,1) with (ra)® + (rb)* = 1 to give ((ra)®, (rb)*) = (z,w).
Then the curves C,,, = {((ra)t, (rb)")|t > 0} fill up the set {(z,y)|0 <
x,y < 1}. That is

U Cz,w:{(xuy)|0<$7y< 1}
(z,w)eA

Putting ¢ = 1 and considering all 0 < d < 2 in Lemma 2.4, we have the
above fact. Theorem 3.2 gives the Hausdorff and packing dimension of
{1,238, pyy- O

REMARK 3.8. If (z,y) — (1,1) where (z,y) € {(z,y)|0 < z,y < 1},
then we see that dim({1,2}",p,,) = Dim({1,2}",p,,) — oo. For,
if (z,y) — (1,1) where (z,y) € {(z,y)|0 < z,y < 1} then ¢ should
approach to 0 where (ra)t = x, (rb)! = y for some a,b € A. Hence the
Hausdorff and packing dimension 3 — oo for a fixed positive value s
which is derived from fixed a, b.

COROLLARY 3.9. If G C {1, Z}va(ra)t,(rb)t; then dlm(G) = M’

t
where f : Frqr — {1, 2},

Proof. We note that f is a bijection. It follows from Lemma 3.1 and
Theorem 3.2. O

COROLLARY 3.10. If G C {1, 2}N7p(7"a)t,(rb)t7 then

_ Dim(f(@))

Dim(G) ; ,
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where f : Frqr — {1, 23N,

Proof. We note that f is a bijection. It follows from Lemma 3.1 and
Theorem 3.2. ]

PROPOSITION 3.11. In F,q 4, for a distribution set F(q) with a lower
distribution set F(q) where q € [0, 1],
qlogq+ (1 — q)log(1 —q)
qlogra+ (1 —q)logrb

dim(F(q)) = dim(F(q)) = Dim(F(q)) =

Proof. We note that

qloggq+ (1 —q)log(1l —q)
qloga+ (1 —q)logh

dim(£(q)) = dim(F(q)) = Dim(F(q)) =
(1, 3]) for a self-similar Cantor set with contraction ratios a,b. It follows

from the above with contraction ratios ra, rb. ]

COROLLARY 3.12. In Fq,p, for each q € [0,1] and f : Frqp —
{1,231, prayt oyt

dim(f(£(q))) = dim(f(F(q))) = Dim(f(F(q)))
_qlogg+ (1 —q)log(l —gq)
~ tqlogra+t(1 —q)logrb

Proof. Tt follows from the above Proposition and Corollaries. O

REMARK 3.13. In the above Corollary, we see that in {1, 2}, P(ra)t,(rb)t>
dim(f(F((ra)®))) = Dim(f(F((ra)*))) =

for s satisfying (ra)’ + (rb)® = 1. We note that 7(,q)s (F(
by the strong law of large numbers. Hence T'(,qs (f (F'((7

~+~| »

/\

ra)® ))_1>0
a)®))) =

REMARK 3.14. Let s satisfy (ra)® + (rb)® = 1. We clearly see that
Lrays (f(F(q))) = 0 for all g(# (ra)®) € [0,1]. We note that {f(F(q)) :
q € [0,1]} forms a multifractal spectrum of a coding space {1,2}" with
a non-Euclidean metric p(,q)t (rp)¢ giving for its members

qlogq+ (1 —q)log(1 —q)
tqlogra +t(1 — q)logrd

dim(f(F(q))) = Dim(f(F(q))) =

EXAMPLE 3.15. Let s satisfy (ra)® 4 (rb)° = 1. Let
E = Uy£(ra))efo) f (F(q))-
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We see that I'(q)s (E) = 0 since I',q)s (f(F((ra)®))) = Land T (,q): ({1, 2}")
= 1. We note that dim(E) = Dim(£) = 3 without the condition that
L (rays(E) > 0. It follows from that dim(E) > supg(£(ra))ecjo,1] Am(f (£ (q)))
by monotonicity and
: qlogg+ (1 —q)log(l—q) s
sup  dim(f(F(q))) = sup =
a(#(ra))elo.1] a(Aray ) talogra+#(l —g)logrb

Similarly it holds for packing case.
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