JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **19**, No. 4, December 2006

MULTIFRACTAL ANALYSIS OF A GENERAL CODING SPACE

In Soo Baek*

ABSTRACT. We study Hausdorff and packing dimensions of subsets of a general coding space with a generalized ultra metric from a multifractal spectrum induced by a self-similar measure on a selfsimilar Cantor set using a function satisfying a Hölder condition.

1. Introduction

Recently we obtained some results([1, 3]) of relationship between members of a spectral class of a self-similar Cantor set ([1, 3, 7]) using distribution sets([1, 3]) of a frequency sequence. We also found some relationship([4]) between subsets of a Cantor set and their corresponding subsets of a coding space using a function satisfying a Hölder condition. Nowadays most of the fractals have been dealt in the Euclidean space for the discoveries of their Hausdorff and packing dimensions ([7])in the Euclidean space. However Hausdorff and packing dimensions can also be considered in a non-Euclidean metric space. We consider such an example as a coding space with an ultra metric and they give also many informations of structures of the space. Recently we([4]) studied a relationship between subsets in a coding space with an ultra metric and subsets in a Cantor set with the Euclidean metric. Combining the $\operatorname{results}([1, 3, 4])$, we get some information of multifractal spectra of a coding space of the Cantor set. We note that the bridge to connect the two subsets which are in a self-similar Cantor set and in a coding space is a natural code function ([2]).

In this paper using the relationship([1, 3]) between members of spectral class of a self-similar Cantor set and their corresponding subsets in a coding space, we get the Hausdorff dimensions and packing dimensions of multifractal spectral members of a coding space.

Received October 23, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A78. Secondary 8A80.

Key words and phrases: Hausdorff dimension, packing dimension, coding space .

2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the similarities $f_1(x) = ax$ and $f_2(x) = bx + (1-b)$ on I = [0,1] with a > 0, b > 0 and 1 - (a+b) > 0. Let $I_{i_1,\dots,i_k} = f_{i_1} \circ \dots \circ f_{i_k}(I)$ where $i_j \in \{1,2\}$ and $1 \le j \le k$.

Let \mathbb{N} be the set of natural numbers and \mathbb{R} be the set of real numbers. We note that if $x \in F$, then there is $\sigma \in \{1,2\}^{\mathbb{N}}$ such that $\bigcap_{k=1}^{\infty} I_{\sigma|k} = \{x\}$ (Here $\sigma|k = i_1, i_2, \cdots, i_k$ where $\sigma = i_1, i_2, \cdots, i_k, i_{k+1}, \cdots$). If $x \in F$ and $x \in I_{\sigma}$ where $\sigma \in \{1,2\}^k$, $c_k(x)$ denotes I_{σ} and $|c_k(x)|$ denotes the diameter of $c_k(x)$ for each $k = 0, 1, 2, \cdots$. Let $p \in (0, 1)$ and we denote γ_p a self-similar Borel probability measure on F satisfying $\gamma_p(I_1) = p(\text{cf.} [7])$. dim(E) denotes the Hausdorff dimension of E and Dim(E) denotes the packing dimension of E([7]). We note that $\dim(E) \leq \text{Dim}(E)$ for every set E([7]). We denote $n_1(x|k)$ the number of times the digit 1 occurs in the first k places of $x = \sigma(\text{cf.} [1])$.

For $q \in [0, 1]$, we define lower(upper) distribution set $\underline{F}(r)(\overline{F}(r))$ containing the digit 1 in proportion q by

$$\underline{F}(q) = \{ x \in F : \liminf_{k \to \infty} \frac{n_1(x|k)}{k} = q \},$$
$$\overline{F}(q) = \{ x \in F : \limsup_{k \to \infty} \frac{n_1(x|k)}{k} = q \}.$$

We write $\underline{F}(q) \cap \overline{F}(q) = F(q)$ and call it a distribution set containing the digit 1 in proportion q.

We assume that $\{1,2\}^{\mathbb{N}}$ is an ultra metric space with the ultra metric ρ satisfying, for $(x,y) \in \{(x,y)|0 < x, y < 1\}$, $\rho(\sigma,\sigma) = 0$ and if $\sigma \neq \tau$ then $\rho(\sigma,\tau) = x^{n_1(x|k)}y^{k-n_1(x|k)}$ where $\sigma = i_1i_2\cdots i_ki_{k+1}\cdots$ and $\tau = i_1i_2\cdots i_kj_{k+1}\cdots$ where $i_{k+1}\neq j_{k+1}$ for some $k = 0, 1, 2\cdots$. We will call $\{1,2\}^{\mathbb{N}}$ with such an ultra metric *a coding space with a generalized ultra metric* $\rho_{x,y}$.

If a = b = r where $r \in (0, 1)$, we will call the generalized ultra metric space by $\{1, 2\}^{\mathbb{N}}$ with an ultra metric $\rho_{r,r} (\equiv \rho_r)$ a coding space with a uniform ultra metric ρ_r . In that case(([6]) ρ_r satisfies $\rho_r(\sigma, \sigma) = 0$ and if $\sigma \neq \tau$ then $\rho_r(\sigma, \tau) = r^{n_1(x|k)}r^{k-n_1(x|k)} = r^k$ where $\sigma = i_1i_2 \cdots i_ki_{k+1} \cdots$ and $\tau = i_1i_2 \cdots i_kj_{k+1} \cdots$ where $i_{k+1} \neq j_{k+1}$ for some $k = 0, 1, 2 \cdots$. In [4] we considered $\{1, 2\}^{\mathbb{N}}$ with a uniform ultra metric $\rho_{\frac{1}{2}}$.

In the coding space we can define a probability measure Γ_p induced by a natural set function defined on the class of its cylinders.

We define a natural code function $f: F \longrightarrow \{1,2\}^{\mathbb{N}}$ such that $f(x) = \sigma$ with $\{x\} = \bigcap_{k=0}^{\infty} I_{\sigma|k}$ where $\sigma \in \{1,2\}^{\mathbb{N}}$ and F is the self-similar Cantor set with contraction ratios a, b. If we define $\Gamma_p((f(x)|n) \times \{1,2\}^{\mathbb{N}}) = \gamma_p(I_{f(x)|n})$ for all $x \in F$, then Γ_p is easily extended to a Borel probability measure on $\{1,2\}^{\mathbb{N}}$.

Before going into our main theorems, we need some lemmas to be studied. Before going into our lemmas, we need some definitions to be considered. Let $\Delta_c = \{(a, b) | 0 < a, b < 1, a + b = c\}$ where 0 < c < 2. We define $s_d(a, b)$ to be a real number s satisfying $a^s + b^s = d$ for each $(a, b) \in \bigcup_{0 < c < 2} \Delta_c$ for each $d \in (0, 2)$. The definition is well-defined from the following Lemma.

LEMMA 2.1. There is a unique positive number t satisfying $a^t + b^t = d$ where 0 < d < 2 for any $(a,b) \in \Delta_c$ for each 0 < c < 2. That is, a positive number $s_d(a,b)$ is well-defined for any 0 < d < 2 and any $(a,b) \in \Delta_c$ for each 0 < c < 2. Further $\{s_d(a,b)|(a,b) \in \Delta_c\} = (0, l_{c,d}]$ where $l_{c,d} = \frac{\log \frac{d}{2}}{\log \frac{d}{2}}$.

Proof. It follows from that the function $p(t) = a^t + b^t$ is a strictly decreasing function for $t \in (0, \infty)$ having a range (0, 2). Further $l_{c,d}$ follows from the solution t of the equation $(\frac{c}{2})^t + (\frac{c}{2})^t = d$.

LEMMA 2.2. $\{(a^{s_d(a,b)}, b^{s_d(a,b)})\} = \{(a^t, b^t)|t > 0\} \cap \Delta_d$ for each $(a,b) \in \Delta_c$ where 0 < c < 2.

Proof. It follows from the uniqueness of the solution t of the equation $a^t + b^t = d$.

LEMMA 2.3. The function $S_d : \Delta_c \longrightarrow \Delta_d$ such that $S_d(a,b) = (a^{s_d(a,b)}, b^{s_d(a,b)})$ is a bijection.

Proof. Let $(a, b) \in \Delta_c$. Then $a^{s_d(a,b)} + b^{s_d(a,b)} = d$ for some positive number $s_d(a, b)$. Suppose that $(a', b') \neq (a, b) \in \Delta_c$. Then $(a')^{s_d(a',b')} + (b')^{s_d(a',b')} = d$ for some positive number $s_d(a', b')$. Then we have

 $(a^{s_d(a,b)}, b^{s_d(a,b)}) \neq ((a')^{s_d(a',b')}, (b')^{s_d(a',b')}).$

For, if we assume that

$$(a^{s_d(a,b)}, b^{s_d(a,b)}) = ((a')^{s_d(a',b')}, (b')^{s_d(a',b')}),$$

we get $\frac{\log a'}{\log a} = \frac{\log b'}{\log b}$. If we put $\frac{\log a'}{\log a} = \frac{\log b'}{\log b} = \alpha$, then we have $\alpha \neq 1$ since $(a', b') \neq (a, b)$. Assuming that $\alpha > 1$, we have a contradiction that $c = a' + b' = a^{\alpha} + b^{\alpha} < a + b = c$. Similarly we have a contradiction for $\alpha < 1$. Hence S_d is an injection. By the above Lemma, we get that S_d is a surjection. For, $\{(a^t, b^t) | t > 0\} = \{(x, x^{\alpha}) | 0 < x < 1\}$ since we have $b = a^{\alpha}$ for some $0 < \alpha < \infty$ noting that 0 < a, b < 1. Further we easily see that such α varies in $(0, \infty)$ as (a, b) varies in Δ_c for each $c \in (0, 2)$.

LEMMA 2.4. $\{(a^{s_d(a,b)}, b^{s_d(a,b)}) | (a,b) \in \Delta_c\} = \Delta_d$ for each 0 < c, d < 2.

Proof. It follows from the above Lemma.

3. Main results

The following lemma gives the scaling properties of Hausdorff and packing dimensions of an image of a function satisfying a bi-Hölder condition.

LEMMA 3.1. Let E be a metric space with a metric ρ . Let $f: F \longrightarrow E$ be a function satisfying a Hölder condition

$$c_1|x-y|^{\alpha} \le \rho(f(x), f(y)) \le c_2|x-y|^{\alpha}$$

for some constants c_1, c_2 and each $x, y \in F$. Then $\dim_H(f(F)) = \frac{1}{\alpha} \dim_H(F)$ and $\dim_p(f(F)) = \frac{1}{\alpha} \dim_p(F)$.

Proof. $\dim_H(f(F)) = \frac{1}{\alpha} \dim_H(F)$ follows from Proposition 2.3 of [7]. $\dim_p(f(F)) = \frac{1}{\alpha} \dim_p(F)$ follows from [4] or the similar arguments with the proof of Proposition 2.3 of [7].

The following theorem gives the close connection between the generalized ultra metric space and the self-similar Cantor set.

THEOREM 3.2. Let a + b = 1 for positive real numbers a, b. Consider an arbitrary real number $r \in (0, 1)$. Then there there is 0 < s < 1 such that $(ra)^s + (rb)^s = 1$. Let $f : F_{ra,rb} \longrightarrow \{1,2\}^{\mathbb{N}}$ be a function such that $f(x) = \sigma$ with $\{x\} = \bigcap_{k=0}^{\infty} I_{\sigma|k}$ where $\sigma \in \{1,2\}^{\mathbb{N}}$ and $F_{ra,rb}$ is a self-similar Cantor set with contraction ratios ra, rb. Then it satisfies a Hölder condition

$$|x - y|^t \le \rho_{(ra)^t, (rb)^t}(f(x), f(y)) \le \left[\frac{1}{1 - (ra + rb)}\right]^t |x - y|^t$$

for each $x, y \in F_{ra,rb}$ for each positive number t. Hence

$$\dim(\{1,2\}^{\mathbb{N}},\rho_{(ra)^{t},(rb)^{t}}) = \operatorname{Dim}(\{1,2\}^{\mathbb{N}},\rho_{(ra)^{t},(rb)^{t}}) = \frac{s}{t}.$$

Proof. Considering a fundamental interval of $F_{ra,rb}$, we easily get

$$|x - y| \le \rho_{ra,rb}(f(x), f(y)) \le \left[\frac{1}{1 - (ra + rb)}\right]|x - y|$$

for each $x, y \in F_{ra,rb}$. Hence we have for each positive real number t

$$|x-y|^{t} \le \rho_{(ra)^{t},(rb)^{t}}(f(x),f(y)) \le \left[\frac{1}{1-(ra+rb)}\right]^{t}|x-y|^{t}$$

for each $x, y \in F_{ra,rb}$. By Lemma 2.1, we get result from $\dim(F_{ra,rb}) = \text{Dim}(F_{ra,rb}) = s$ since $(ra)^s + (rb)^s = 1$.

COROLLARY 3.3. ([4]) Let $f: F \longrightarrow \{1,2\}^{\mathbb{N}}$ be a function such that $f(x) = \sigma$ with $\{x\} = \bigcap_{k=0}^{\infty} I_{\sigma|k}$ where $\sigma \in \{1,2\}^{\mathbb{N}}$ and F is the classical Cantor ternary set. Then it satisfies a Hölder condition

$$|x-y|^{\frac{\log 2}{\log 3}} \le \rho_{\frac{1}{2}}(f(x), f(y)) \le 2|x-y|^{\frac{\log 2}{\log 3}}$$

for each $x, y \in F$. Hence $\dim(\{1,2\}^{\mathbb{N}}, \rho_{\frac{1}{2}}) = \dim(\{1,2\}^{\mathbb{N}}, \rho_{\frac{1}{2}}) = 1$.

Proof. We consider $a = b = \frac{1}{2}$ and $r = \frac{2}{3}$ in the above Lemma. Then $s = \frac{\log 2}{\log 3}$. Considering $t = \frac{\log 2}{\log 3}$, we have our result.

EXAMPLE 3.4. Let $a = \frac{1}{3}$ and $b = \frac{2}{3}$. Consider $r = \frac{3}{4}$. Then the solution s of the equation $(\frac{1}{4})^s + (\frac{1}{2})^s = 1$ is $\frac{\log(\frac{\sqrt{5}-1}{2})}{\log(\frac{1}{2})}$. Hence for $s = \frac{\log(\frac{\sqrt{5}-1}{2})}{\log(\frac{1}{2})}$ we have

$$|x-y|^s \le \rho_{\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}-1}{2}}(f(x),f(y)) \le [\frac{1}{1-(ra+rb)}]^s |x-y|^s$$

for each $x, y \in F_{\frac{1}{4}, \frac{1}{2}}$. Hence we have

$$\dim(\{1,2\}^{\mathbb{N}}, \rho_{\frac{3-\sqrt{5}}{2}, \frac{\sqrt{5}-1}{2}}) = \operatorname{Dim}(\{1,2\}^{\mathbb{N}}, \rho_{\frac{3-\sqrt{5}}{2}, \frac{\sqrt{5}-1}{2}}) = 1.$$

REMARK 3.5. From the above Example, we find $\frac{3-\sqrt{5}}{2}$, $\frac{\sqrt{5}-1}{2}$ from $a = \frac{1}{3}$ and $b = \frac{2}{3}$ and $r = \frac{3}{4}$.

THEOREM 3.6. Each pair (x, y) of real numbers in the simplex $\Delta = \{(x, y) | x, y > 0, x + y = 1\}$ has a proper $(a, b) \in \Delta$ with 0 < r < 1 to give $(ra)^s + (rb)^s = 1$ and $(ra)^s = x, (rb)^s = y$.

Proof. Consider a pair (x, y) of real numbers in the simplex $\Delta = \{(x, y) | x, y > 0, x + y = 1\}$. For each $a \in (0, 1)$ $s_a(r)$ is a continuous function whose range is (0, 1) for $r \in (0, 1)$ where $(ra)^{s_a(r)} + (r(1 - a))^{s_a(r)} = 1$. Then for each $a \in (0, 1)$ and a fixed $s \in (0, 1)$ there exists $r \in (0, 1)$ such that $(ra)^s + (r(1 - a))^s = 1$ by the intermediate value theorem. Noting $x = \frac{1}{1 + (\frac{1-a}{a})^s}$, we find $a \in (0, 1)$ satisfying $x = \frac{1}{1 + (\frac{1-a}{a})^s}$ for the above fixed $s \in (0, 1)$ using $r \in (0, 1)$ properly. \Box

The proof of the above theorem adopts a direct method whereas that of the following theorem does not.

THEOREM 3.7. Each pair (x, y) of real numbers with 0 < x, y < 1has a proper (a, b) in the simplex $\Delta = \{(a, b)|a, b > 0, a + b = 1\}$ with 0 < r < 1 to give $(ra)^s + (rb)^s = 1$ and $(ra)^t = x, (rb)^t = y$. Hence it gives dim $(\{1, 2\}^{\mathbb{N}}, \rho_{x,y}) = \text{Dim}(\{1, 2\}^{\mathbb{N}}, \rho_{x,y}) = \frac{s}{t}$.

Proof. From the above Theorem, for each $(z, w) \in \Delta$ we have $(a, b) \in \Delta$ and $r \in (0, 1)$ with $(ra)^s + (rb)^s = 1$ to give $((ra)^s, (rb)^s) = (z, w)$. Then the curves $C_{z,w} = \{((ra)^t, (rb)^t)|t > 0\}$ fill up the set $\{(x, y)|0 < x, y < 1\}$. That is

$$\bigcup_{(z,w)\in\Delta} C_{z,w} = \{(x,y)| 0 < x, y < 1\}.$$

Putting c = 1 and considering all 0 < d < 2 in Lemma 2.4, we have the above fact. Theorem 3.2 gives the Hausdorff and packing dimension of $\{1,2\}^{\mathbb{N}}, \rho_{x,y}$.

REMARK 3.8. If $(x, y) \to (1, 1)$ where $(x, y) \in \{(x, y) | 0 < x, y < 1\}$, then we see that $\dim(\{1, 2\}^{\mathbb{N}}, \rho_{x,y}) = \operatorname{Dim}(\{1, 2\}^{\mathbb{N}}, \rho_{x,y}) \to \infty$. For, if $(x, y) \to (1, 1)$ where $(x, y) \in \{(x, y) | 0 < x, y < 1\}$ then t should approach to 0 where $(ra)^t = x, (rb)^t = y$ for some $a, b \in \Delta$. Hence the Hausdorff and packing dimension $\frac{s}{t} \to \infty$ for a fixed positive value s which is derived from fixed a, b.

COROLLARY 3.9. If $G \subset \{1,2\}^{\mathbb{N}}$, $\rho_{(ra)^t,(rb)^t}$, then $\dim(G) = \frac{\dim(f^{-1}(G))}{t}$, where $f: F_{ra,rb} \longrightarrow \{1,2\}^{\mathbb{N}}$.

Proof. We note that f is a bijection. It follows from Lemma 3.1 and Theorem 3.2.

COROLLARY 3.10. If $G \subset \{1,2\}^{\mathbb{N}}, \rho_{(ra)^t,(rb)^t}$, then

$$\operatorname{Dim}(G) = \frac{\operatorname{Dim}(f^{-1}(G))}{t},$$

where $f: F_{ra,rb} \longrightarrow \{1,2\}^{\mathbb{N}}$.

Proof. We note that f is a bijection. It follows from Lemma 3.1 and Theorem 3.2.

PROPOSITION 3.11. In $F_{ra,rb}$, for a distribution set F(q) with a lower distribution set $\underline{F}(q)$ where $q \in [0, 1]$,

$$\dim(\underline{F}(q)) = \dim(F(q)) = \operatorname{Dim}(F(q)) = \frac{q\log q + (1-q)\log(1-q)}{q\log ra + (1-q)\log rb}.$$

Proof. We note that

$$\dim(\underline{F}(q)) = \dim(F(q)) = \dim(F(q)) = \frac{q\log q + (1-q)\log(1-q)}{q\log a + (1-q)\log b}$$

([1, 3]) for a self-similar Cantor set with contraction ratios a, b. It follows from the above with contraction ratios ra, rb.

COROLLARY 3.12. In $F_{ra,rb}$, for each $q \in [0,1]$ and $f : F_{ra,rb} \longrightarrow \{1,2\}^{\mathbb{N}}, \rho_{(ra)^t,(rb)^t},$

$$\dim(f(\underline{F}(q))) = \dim(f(F(q))) = \dim(f(F(q)))$$
$$= \frac{q \log q + (1-q) \log(1-q)}{tq \log ra + t(1-q) \log rb}.$$

Proof. It follows from the above Proposition and Corollaries. \Box

REMARK 3.13. In the above Corollary, we see that in $\{1,2\}^{\mathbb{N}}$, $\rho_{(ra)^t,(rb)^t}$,

$$\dim(f(F((ra)^s))) = \operatorname{Dim}(f(F((ra)^s))) = \frac{2}{3}$$

for s satisfying $(ra)^s + (rb)^s = 1$. We note that $\gamma_{(ra)^s}(F((ra)^s)) = 1 > 0$ by the strong law of large numbers. Hence $\Gamma_{(ra)^s}(f(F((ra)^s))) = 1$.

REMARK 3.14. Let s satisfy $(ra)^s + (rb)^s = 1$. We clearly see that $\Gamma_{(ra)^s}(f(F(q))) = 0$ for all $q \neq (ra)^s) \in [0, 1]$. We note that $\{f(F(q)) : q \in [0, 1]\}$ forms a multifractal spectrum of a coding space $\{1, 2\}^{\mathbb{N}}$ with a non-Euclidean metric $\rho_{(ra)^t, (rb)^t}$ giving for its members

$$\dim(f(F(q))) = \dim(f(F(q))) = \frac{q \log q + (1-q) \log(1-q)}{tq \log ra + t(1-q) \log rb}.$$

EXAMPLE 3.15. Let s satisfy $(ra)^s + (rb)^s = 1$. Let

$$E = \bigcup_{q \neq (ra)^s} f(F(q)).$$

We see that $\Gamma_{(ra)^s}(E) = 0$ since $\Gamma_{(ra)^s}(f(F((ra)^s))) = 1$ and $\Gamma_{(ra)^s}(\{1,2\}^{\mathbb{N}})$ = 1. We note that $\dim(E) = \operatorname{Dim}(E) = \frac{s}{t}$ without the condition that $\Gamma_{(ra)^s}(E) > 0$. It follows from that $\dim(E) \ge \sup_{q(\neq (ra)^s) \in [0,1]} \dim(f(F(q)))$ by monotonicity and

 $\sup_{q(\neq (ra)^s)\in[0,1]} \dim(f(F(q))) = \sup_{q(\neq (ra)^s)\in[0,1]} \frac{q\log q + (1-q)\log(1-q)}{tq\log ra + t(1-q)\log rb} = \frac{s}{t}.$

Similarly it holds for packing case.

References

- H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32(2) (1992), 149–152.
- [2] I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26(2) (2001), 553–558.
- [3] I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292(1) (2004), 294-302.
- [4] I. S. Baek, Multifractal analysis of a coding space of the Cantor set, Kangweon-Kyungki Mathematical Journal 12(1) (2004),1-5.
- [5] C. D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. & Math. Sci. 11(4) (1988), 643–650.
- [6] G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer Verlag, 1990.
- [7] K. J. Falconer, The Fractal Geometry, John Wiley & Sons , 1990.

*

Department of Mathematics Pusan University of Foreign Studies Pusan 608-738, Republic of Korea *E-mail*: isbaek@pufs.ac.kr