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MULTIFRACTAL ANALYSIS OF A GENERAL CODING
SPACE

In Soo Baek*

Abstract. We study Hausdorff and packing dimensions of subsets
of a general coding space with a generalized ultra metric from a
multifractal spectrum induced by a self-similar measure on a self-
similar Cantor set using a function satisfying a Hölder condition.

1. Introduction

Recently we obtained some results([1, 3]) of relationship between
members of a spectral class of a self-similar Cantor set([1, 3, 7]) using
distribution sets([1, 3]) of a frequency sequence. We also found some
relationship([4]) between subsets of a Cantor set and their correspond-
ing subsets of a coding space using a function satisfying a Hölder con-
dition. Nowadays most of the fractals have been dealt in the Euclidean
space for the discoveries of their Hausdorff and packing dimensions([7])
in the Euclidean space. However Hausdorff and packing dimensions can
also be considered in a non-Euclidean metric space. We consider such
an example as a coding space with an ultra metric and they give also
many informations of structures of the space. Recently we([4]) studied
a relationship between subsets in a coding space with an ultra metric
and subsets in a Cantor set with the Euclidean metric. Combining the
results([1, 3, 4]), we get some information of multifractal spectra of a
coding space of the Cantor set. We note that the bridge to connect the
two subsets which are in a self-similar Cantor set and in a coding space
is a natural code function([2]).

In this paper using the relationship([1, 3]) between members of spec-
tral class of a self-similar Cantor set and their corresponding subsets in a
coding space, we get the Hausdorff dimensions and packing dimensions
of multifractal spectral members of a coding space.
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2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the
similarities f1(x) = ax and f2(x) = bx+(1− b) on I = [0, 1] with a > 0,
b > 0 and 1−(a+b) > 0. Let Ii1,··· ,ik = fi1 ◦· · ·◦fik(I) where ij ∈ {1, 2}
and 1 ≤ j ≤ k.

Let N be the set of natural numbers and R be the set of real numbers.
We note that if x ∈ F , then there is σ ∈ {1, 2}N such that

⋂∞
k=1 Iσ|k =

{x} (Here σ|k = i1, i2, · · · , ik where σ = i1, i2, · · · , ik, ik+1, · · · ). If x ∈ F
and x ∈ Iσ where σ ∈ {1, 2}k, ck(x) denotes Iσ and |ck(x)| denotes the
diameter of ck(x) for each k = 0, 1, 2, · · · . Let p ∈ (0, 1) and we denote
γp a self-similar Borel probability measure on F satisfying γp(I1) = p(cf.
[7]). dim(E) denotes the Hausdorff dimension of E and Dim(E) denotes
the packing dimension of E([7]). We note that dim(E) ≤ Dim(E) for
every set E([7]). We denote n1(x|k) the number of times the digit 1
occurs in the first k places of x = σ(cf. [1]).
For q ∈ [0, 1], we define lower(upper) distribution set F (r)(F (r)) con-
taining the digit 1 in proportion q by

F (q) = {x ∈ F : lim inf
k→∞

n1(x|k)
k

= q},

F (q) = {x ∈ F : lim sup
k→∞

n1(x|k)
k

= q}.

We write F (q) ∩ F (q) = F (q) and call it a distribution set containing
the digit 1 in proportion q.

We assume that {1, 2}N is an ultra metric space with the ultra met-
ric ρ satisfying, for (x, y) ∈ {(x, y)|0 < x, y < 1}, ρ(σ, σ) = 0 and if
σ 6= τ then ρ(σ, τ) = xn1(x|k)yk−n1(x|k) where σ = i1i2 · · · ikik+1 · · · and
τ = i1i2 · · · ikjk+1 · · · where ik+1 6= jk+1 for some k = 0, 1, 2 · · · . We will
call {1, 2}N with such an ultra metric a coding space with a generalized
ultra metric ρx,y.

If a = b = r where r ∈ (0, 1), we will call the generalized ultra metric
space by {1, 2}N with an ultra metric ρr,r(≡ ρr) a coding space with a
uniform ultra metric ρr. In that case(([6]) ρr satisfies ρr(σ, σ) = 0 and if
σ 6= τ then ρr(σ, τ) = rn1(x|k)rk−n1(x|k) = rk where σ = i1i2 · · · ikik+1 · · ·
and τ = i1i2 · · · ikjk+1 · · · where ik+1 6= jk+1 for some k = 0, 1, 2 · · · . In
[4] we considered {1, 2}N with a uniform ultra metric ρ 1

2
.
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In the coding space we can define a probability measure Γp induced
by a natural set function defined on the class of its cylinders.

We define a natural code function f : F −→ {1, 2}N such that f(x) =
σ with {x} =

⋂∞
k=0 Iσ|k where σ ∈ {1, 2}N and F is the self-similar Can-

tor set with contraction ratios a, b. If we define Γp((f(x)|n)×{1, 2}N) =
γp(If(x)|n) for all x ∈ F , then Γp is easily extended to a Borel probability
measure on {1, 2}N.

Before going into our main theorems, we need some lemmas to be
studied. Before going into our lemmas, we need some definitions to be
considered. Let ∆c = {(a, b)|0 < a, b < 1, a + b = c} where 0 < c < 2.
We define sd(a, b) to be a real number s satisfying as + bs = d for each
(a, b) ∈ ⋃

0<c<2 ∆c for each d ∈ (0, 2). The definition is well-defined
from the following Lemma.

Lemma 2.1. There is a unique positive number t satisfying at+bt = d
where 0 < d < 2 for any (a, b) ∈ ∆c for each 0 < c < 2. That is,
a positive number sd(a, b) is well-defined for any 0 < d < 2 and any
(a, b) ∈ ∆c for each 0 < c < 2. Further {sd(a, b)|(a, b) ∈ ∆c} = (0, lc,d]

where lc,d = log d
2

log c
2
.

Proof. It follows from that the function p(t) = at + bt is a strictly
decreasing function for t ∈ (0,∞) having a range (0, 2). Further lc,d
follows from the solution t of the equation ( c

2)t + ( c
2)t = d.

Lemma 2.2. {(asd(a,b), bsd(a,b))} = {(at, bt)|t > 0} ∩ ∆d for each
(a, b) ∈ ∆c where 0 < c < 2.

Proof. It follows from the uniqueness of the solution t of the equation
at + bt = d.

Lemma 2.3. The function Sd : ∆c −→ ∆d such that Sd(a, b) =
(asd(a,b), bsd(a,b)) is a bijection.

Proof. Let (a, b) ∈ ∆c. Then asd(a,b) + bsd(a,b) = d for some positive
number sd(a, b). Suppose that (a′, b′)(6= (a, b)) ∈ ∆c. Then (a′)sd(a′,b′) +
(b′)sd(a′,b′) = d for some positive number sd(a′, b′). Then we have

(asd(a,b), bsd(a,b)) 6= ((a′)sd(a′,b′), (b′)sd(a′,b′)).

For, if we assume that

(asd(a,b), bsd(a,b)) = ((a′)sd(a′,b′), (b′)sd(a′,b′)),
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we get log a′
log a = log b′

log b . If we put log a′
log a = log b′

log b = α, then we have α 6= 1
since (a′, b′) 6= (a, b). Assuming that α > 1, we have a contradiction
that c = a′+ b′ = aα + bα < a+ b = c. Similarly we have a contradiction
for α < 1. Hence Sd is an injection. By the above Lemma, we get that
Sd is a surjection. For, {(at, bt)|t > 0} = {(x, xα)|0 < x < 1} since we
have b = aα for some 0 < α < ∞ noting that 0 < a, b < 1. Further
we easily see that such α varies in (0,∞) as (a, b) varies in ∆c for each
c ∈ (0, 2).

Lemma 2.4. {(asd(a,b), bsd(a,b))|(a, b) ∈ ∆c} = ∆d for each 0 < c, d <
2.

Proof. It follows from the above Lemma.

3. Main results

The following lemma gives the scaling properties of Hausdorff and
packing dimensions of an image of a function satisfying a bi-Hölder con-
dition.

Lemma 3.1. Let E be a metric space with a metric ρ. Let f : F −→ E
be a function satisfying a Hölder condition

c1|x− y|α ≤ ρ(f(x), f(y)) ≤ c2|x− y|α
for some constants c1, c2 and each x, y ∈ F . Then dimH(f(F )) =
1
α dimH(F ) and dimp(f(F )) = 1

α dimp(F ).

Proof. dimH(f(F )) = 1
α dimH(F ) follows from Proposition 2.3 of [7].

dimp(f(F )) = 1
α dimp(F ) follows from [4] or the similar arguments with

the proof of Proposition 2.3 of [7].

The following theorem gives the close connection between the gener-
alized ultra metric space and the self-similar Cantor set.

Theorem 3.2. Let a+ b = 1 for positive real numbers a, b. Consider
an arbitrary real number r ∈ (0, 1). Then there there is 0 < s < 1 such
that (ra)s + (rb)s = 1. Let f : Fra,rb −→ {1, 2}N be a function such

that f(x) = σ with {x} =
⋂∞

k=0 Iσ|k where σ ∈ {1, 2}N and Fra,rb is a
self-similar Cantor set with contraction ratios ra, rb. Then it satisfies a
Hölder condition

|x− y|t ≤ ρ(ra)t,(rb)t(f(x), f(y)) ≤ [
1

1− (ra + rb)
]t|x− y|t
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for each x, y ∈ Fra,rb for each positive number t. Hence

dim({1, 2}N, ρ(ra)t,(rb)t) = Dim({1, 2}N, ρ(ra)t,(rb)t) =
s

t
.

Proof. Considering a fundamental interval of Fra,rb, we easily get

|x− y| ≤ ρra,rb(f(x), f(y)) ≤ [
1

1− (ra + rb)
]|x− y|

for each x, y ∈ Fra,rb. Hence we have for each positive real number t

|x− y|t ≤ ρ(ra)t,(rb)t(f(x), f(y)) ≤ [
1

1− (ra + rb)
]t|x− y|t

for each x, y ∈ Fra,rb. By Lemma 2.1, we get result from dim(Fra,rb) =
Dim(Fra,rb) = s since (ra)s + (rb)s = 1.

Corollary 3.3. ([4]) Let f : F −→ {1, 2}N be a function such that
f(x) = σ with {x} =

⋂∞
k=0 Iσ|k where σ ∈ {1, 2}N and F is the classical

Cantor ternary set. Then it satisfies a Hölder condition

|x− y| log 2
log 3 ≤ ρ 1

2
(f(x), f(y)) ≤ 2|x− y| log 2

log 3

for each x, y ∈ F . Hence dim({1, 2}N, ρ 1
2
) = Dim({1, 2}N, ρ 1

2
) = 1.

Proof. We consider a = b = 1
2 and r = 2

3 in the above Lemma. Then
s = log 2

log 3 . Considering t = log 2
log 3 , we have our result.

Example 3.4. Let a = 1
3 and b = 2

3 . Consider r = 3
4 . Then the

solution s of the equation (1
4)s + (1

2)s = 1 is log(
√

5−1
2

)

log( 1
2
)

. Hence for s =

log(
√

5−1
2

)

log( 1
2
)

we have

|x− y|s ≤ ρ 3−√5
2

,
√

5−1
2

(f(x), f(y)) ≤ [
1

1− (ra + rb)
]s|x− y|s

for each x, y ∈ F 1
4
, 1
2
. Hence we have

dim({1, 2}N, ρ 3−√5
2

,
√

5−1
2

) = Dim({1, 2}N, ρ 3−√5
2

,
√

5−1
2

) = 1.

Remark 3.5. From the above Example, we find 3−√5
2 ,

√
5−1
2 from

a = 1
3 and b = 2

3 and r = 3
4 .

Theorem 3.6. Each pair (x, y) of real numbers in the simplex ∆ =
{(x, y)|x, y > 0, x + y = 1} has a proper (a, b) ∈ ∆ with 0 < r < 1 to
give (ra)s + (rb)s = 1 and (ra)s = x, (rb)s = y.
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Proof. Consider a pair (x, y) of real numbers in the simplex ∆ =
{(x, y)|x, y > 0, x + y = 1}. For each a ∈ (0, 1) sa(r) is a continuous
function whose range is (0, 1) for r ∈ (0, 1) where (ra)sa(r) + (r(1 −
a))sa(r) = 1. Then for each a ∈ (0, 1) and a fixed s ∈ (0, 1) there exists
r ∈ (0, 1) such that (ra)s + (r(1 − a))s = 1 by the intermediate value
theorem. Noting x = 1

1+( 1−a
a

)s , we find a ∈ (0, 1) satisfying x = 1
1+( 1−a

a
)s

for the above fixed s ∈ (0, 1) using r ∈ (0, 1) properly.

The proof of the above theorem adopts a direct method whereas that
of the following theorem does not.

Theorem 3.7. Each pair (x, y) of real numbers with 0 < x, y < 1
has a proper (a, b) in the simplex ∆ = {(a, b)|a, b > 0, a + b = 1} with
0 < r < 1 to give (ra)s + (rb)s = 1 and (ra)t = x, (rb)t = y. Hence it
gives dim({1, 2}N, ρx,y) = Dim({1, 2}N, ρx,y) = s

t .

Proof. From the above Theorem, for each (z, w) ∈ ∆ we have (a, b) ∈
∆ and r ∈ (0, 1) with (ra)s + (rb)s = 1 to give ((ra)s, (rb)s) = (z, w).
Then the curves Cz,w = {((ra)t, (rb)t)|t > 0} fill up the set {(x, y)|0 <
x, y < 1}. That is

⋃

(z,w)∈∆

Cz,w = {(x, y)|0 < x, y < 1}.

Putting c = 1 and considering all 0 < d < 2 in Lemma 2.4, we have the
above fact. Theorem 3.2 gives the Hausdorff and packing dimension of
{1, 2}N, ρx,y.

Remark 3.8. If (x, y) → (1, 1) where (x, y) ∈ {(x, y)|0 < x, y < 1},
then we see that dim({1, 2}N, ρx,y) = Dim({1, 2}N, ρx,y) → ∞. For,
if (x, y) → (1, 1) where (x, y) ∈ {(x, y)|0 < x, y < 1} then t should
approach to 0 where (ra)t = x, (rb)t = y for some a, b ∈ ∆. Hence the
Hausdorff and packing dimension s

t → ∞ for a fixed positive value s
which is derived from fixed a, b.

Corollary 3.9. If G ⊂ {1, 2}N, ρ(ra)t,(rb)t , then dim(G) = dim(f−1(G))
t ,

where f : Fra,rb −→ {1, 2}N.

Proof. We note that f is a bijection. It follows from Lemma 3.1 and
Theorem 3.2.

Corollary 3.10. If G ⊂ {1, 2}N, ρ(ra)t,(rb)t , then

Dim(G) =
Dim(f−1(G))

t
,



Multifractal analysis of a general coding space 363

where f : Fra,rb −→ {1, 2}N.

Proof. We note that f is a bijection. It follows from Lemma 3.1 and
Theorem 3.2.

Proposition 3.11. In Fra,rb, for a distribution set F (q) with a lower
distribution set F (q) where q ∈ [0, 1],

dim(F (q)) = dim(F (q)) = Dim(F (q)) =
q log q + (1− q) log(1− q)

q log ra + (1− q) log rb
.

Proof. We note that

dim(F (q)) = dim(F (q)) = Dim(F (q)) =
q log q + (1− q) log(1− q)

q log a + (1− q) log b

([1, 3]) for a self-similar Cantor set with contraction ratios a, b. It follows
from the above with contraction ratios ra, rb.

Corollary 3.12. In Fra,rb, for each q ∈ [0, 1] and f : Fra,rb −→
{1, 2}N, ρ(ra)t,(rb)t ,

dim(f(F (q))) = dim(f(F (q))) = Dim(f(F (q)))

=
q log q + (1− q) log(1− q)
tq log ra + t(1− q) log rb

.

Proof. It follows from the above Proposition and Corollaries.

Remark 3.13. In the above Corollary, we see that in {1, 2}N, ρ(ra)t,(rb)t ,

dim(f(F ((ra)s))) = Dim(f(F ((ra)s))) =
s

t

for s satisfying (ra)s +(rb)s = 1. We note that γ(ra)s(F ((ra)s)) = 1 > 0
by the strong law of large numbers. Hence Γ(ra)s(f(F ((ra)s))) = 1.

Remark 3.14. Let s satisfy (ra)s + (rb)s = 1. We clearly see that
Γ(ra)s(f(F (q))) = 0 for all q(6= (ra)s) ∈ [0, 1]. We note that {f(F (q)) :
q ∈ [0, 1]} forms a multifractal spectrum of a coding space {1, 2}N with
a non-Euclidean metric ρ(ra)t,(rb)t giving for its members

dim(f(F (q))) = Dim(f(F (q))) =
q log q + (1− q) log(1− q)
tq log ra + t(1− q) log rb

.

Example 3.15. Let s satisfy (ra)s + (rb)s = 1. Let

E = ∪q( 6=(ra)s)∈[0,1]f(F (q)).
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We see that Γ(ra)s(E) = 0 since Γ(ra)s(f(F ((ra)s))) = 1 and Γ(ra)s({1, 2}N)
= 1. We note that dim(E) = Dim(E) = s

t without the condition that
Γ(ra)s(E) > 0. It follows from that dim(E) ≥ supq(6=(ra)s)∈[0,1] dim(f(F (q)))
by monotonicity and

sup
q(6=(ra)s)∈[0,1]

dim(f(F (q))) = sup
q(6=(ra)s)∈[0,1]

q log q + (1− q) log(1− q)
tq log ra + t(1− q) log rb

=
s

t
.

Similarly it holds for packing case.
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