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DIMENSIONALLY EQUIVALENT SPACES

In Soo Baek*

Abstract. We compare a coding space which has an ultra metric
with the unit interval which has an associated generalized dyadic ex-
pansion. The two spaces are not homeomorphic but dimensionally
equivalent in the sense that the Hausdorff and packing dimensions
of the corresponding distribution sets in the two spaces coincide.

1. Introduction

We([2]) studied the multifractal spectrum of a distribution set in a
general coding space(cf.[6]). The dimensions of the distribution sets in a
general coding space can be obtained from a bi-Hölder correspondence
between a self-similar Cantor set and a general coding space with an
ultra metric. In fact, each self-similar Cantor set has its copy of a
coding space with an associated ultra metric related to its contraction
ratios. The coding space with an associated ultra metric generates a
string of coding spaces with ultra metrics related to the powers of the
contraction ratios. We easily obtained the multifractal spectrum of a
distribution set in the generated coding space with powered ultra metrics
using the a bi-Hölder correspondence between a self-similar Cantor set
and the general coding space. Recently we([4]) investigated dimensions
of distribution sets in the unit interval having the usual metric using
the technique([1]) used in a self-similar Cantor set. We showed that the
multifractal spectrum formula holds for the unit interval as that in a
self-similar Cantor set. The difference between the unit interval and a
self-similar Cantor set is that they are not homeomorphic to each other.
Precisely, a continuous map from a self-similar Cantor set to the unit
interval is not bi-continuous. More precisely, the pre-images of two close
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members in the unit interval are not close any more in the self-similar
Cantor set. In this paper, we find that the multifractal spectrum of a
distribution set in a general coding space whose ultra metric structure
resembles the lengths of generalized dyadic intervals is the same as that
of the distribution set in the unit interval having the generalized dyadic
expansion. Finally we give a conjecture that the map which gives this
dimensional equivalence is a dimension-preserving map.

2. Preliminaries

We denote F a self-similar Cantor set([7]), which is the attractor
of the similarities f1(x) = ax and f2(x) = bx + (1 − b) on I = [0, 1]
with a > 0, b > 0 and 1 − (a + b) > 0. Let the fundamental interval
Ii1,··· ,ik = fi1 ◦ · · · ◦ fik(I) where ij ∈ {0, 1} and 1 ≤ j ≤ k. Sometimes
we use the notation Fa,b instead of F to distinguish it from another
self-similar Cantor set having different contraction ratios. We note that
F 1

3
, 1
3

is the classical Cantor ternary set.
Let N be the set of natural numbers and R be the set of real numbers.

We note that if x ∈ F , then there is σ ∈ {0, 1}N such that
⋂∞

k=1 Iσ|k =
{x} (Here σ|k = i1, i2, · · · , ik where σ = i1, i2, · · · , ik, ik+1, · · · ). With-
out confusion, we identify x ∈ F with σ ∈ {0, 1}N where

⋂∞
k=1 Iσ|k =

{x}.
From now on dim(E) denotes the Hausdorff dimension of E and

Dim(E) denotes the packing dimension of E([7]). We note that dim(E) ≤
Dim(E) for every set E([7]). We denote n0(x|k) the number of times
the digit 0 occurs in the first k places of x = σ(cf. [1]).
For q ∈ [0, 1], we define lower(upper) distribution set F (q)(F (q)) con-
taining the digit 1 in proportion q by

F (q) = {x ∈ F : lim inf
k→∞

n0(x|k)
k

= q},

F (q) = {x ∈ F : lim sup
k→∞

n0(x|k)
k

= q}.

We write F (q) ∩ F (q) = F (q) and call it a distribution set containing
the digit 0 in proportion q.

We recall a coding space {0, 1}N with a generalized ultra metric
ρx,y([2]) such that for (x, y) ∈ {(x, y)|0 < x, y < 1}, ρx,y(σ, σ) = 0 and
if σ 6= τ then ρx,y(σ, τ) = xn0(x|k)yk−n0(x|k) where σ = i1i2 · · · ikik+1 · · ·
and τ = i1i2 · · · ikjk+1 · · · where ik+1 6= jk+1 for some k = 0, 1, 2 · · · .
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Before going into our main results, we need some useful lemma. In this
paper, the domain on which a function will be defined will be a subset
of R with the usual metric. The following lemma gives the scaling prop-
erties of Hausdorff and packing dimensions of an image of a function
satisfying a bi-Hölder condition.

Lemma 2.1. ([2]) Let E be a metric space with a metric ρ.
Let f : F −→ E be a function satisfying a bi-Hölder condition

c1|x− y|α ≤ ρ(f(x), f(y)) ≤ c2|x− y|α

for some constants c1, c2 and each x, y ∈ F . Then dim(f(F )) = 1
α dim(F )

and Dim(f(F )) = 1
αDim(F ).

In this paper, we assume that 0 log 0 = 0 for convenience.

3. Main results

Theorem 3.1. Let 0 < α+β < 1 for positive real numbers α, β. Let

f : Fα,β −→ {0, 1}N

be a function such that f(x) = σ with {x} =
⋂∞

k=0 Iσ|k where σ ∈
{0, 1}N. Consider a positive real number t. In {0, 1}N with a generalized
ultra metric ραt,βt for each q ∈ [0, 1], we have

dim(f(F (q))) = dim(f(F (q))) = Dim(f(F (q)))

=
q log q + (1− q) log(1− q)
tq log α + t(1− q) log β

.

Further we have for q ∈ [0, αs] where αs + βs = 1, Dim(f(F (q))) = s
t

with

Dim(f(F (q))) =
q log q + (1− q) log(1− q)
tq log α + t(1− q) log β

.

Similarly we have for q ∈ [αs, 1] where αs + βs = 1, Dim(f(F (q))) = s
t

with

Dim(f(F (q))) =
q log q + (1− q) log(1− q)
tq log α + t(1− q) log β

.

Proof. We have

|x− y| ≤ ρα,β(f(x), f(y)) ≤ [
1

1− (α + β)
]|x− y|
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for each x, y ∈ Fα,β. Hence for each positive real number t

|x− y|t ≤ ραt,βt(f(x), f(y)) ≤ [
1

1− (α + β)
]t|x− y|t

for each x, y ∈ Fα,β([2]). We note that dim(Fα,β) = Dim(Fα,β) = s since
αs + βs = 1. From this together with Lemma 2.1 and the results in [1]
and the parallel results in [3, 5], it follows.

We note that if x ∈ [0, 1], then there is a generalized dyadic expansion
([4], cf. [8])) σ ∈ {0, 1}N such that

⋂∞
k=1 Iσ|k = {x}. Without confusion,

we identify x ∈ [0, 1] with σ ∈ {0, 1}N where
⋂∞

k=1 Iσ|k = {x}. As
above, in [0, 1], we also define lower(upper) distribution set F (q)(F (q))
containing the digit 0 in proportion q where q ∈ [0, 1].

Proposition 3.2. ([4]) Let c + d = 1 for positive real numbers c, d.

Let δ(q) = q log q+(1−q) log(1−q)
q log c+(1−q) log d for q ∈ [0, 1]. In the unit interval having

the generalized dyadic expansion with positive bases c, d with c+ d = 1,
we have
(1) dim(F (q)) = dim(F (q)) = Dim(F (q)) = δ(q) for q ∈ [0, 1],
(2) Dim(F (q))) = 1 and Dim(F (q)) = δ(q) for q ∈ [0, c],
(3) Dim(F (q)) = 1 and Dim(F (q)) = δ(q) for q ∈ [c, 1].

As above, in {0, 1}N with a generalized ultra metric ρc,d, we also
define lower(upper) distribution set F (q)(F (q)) containing the digit 0 in
proportion q where q ∈ [0, 1].

Theorem 3.3. Let c + d = 1 for positive real numbers c, d. Let

δ(q) = q log q+(1−q) log(1−q)
q log c+(1−q) log d for q ∈ [0, 1]. In {0, 1}N with a generalized

ultra metric ρc,d, we have

(1) dim(F (q)) = dim(F (q)) = Dim(F (q)) = δ(q) for q ∈ [0, 1],
(2) Dim(F (q))) = 1 and Dim(F (q)) = δ(q) for q ∈ [0, c],
(3) Dim(F (q)) = 1 and Dim(F (q)) = δ(q) for q ∈ [c, 1].

Proof. By the theorem 3.6([2]), given positive real numbers c, d such
that c + d = 1, there exist positive real numbers a, b and r ∈ (0, 1) such
that a + b = 1 and (ra)s = c and (rb)s = d with (ra)s + (rb)s = 1 for
some positive real number s. Putting α = ra and β = rb in Theorem
3.1 with

f : Fra,rb −→ {0, 1}N,

we see that in {0, 1}N with a generalized ultra metric ρ(ra)s,(rb)s = ρc,d

dim(f(F (q))) = dim(f(F (q))) = Dim(f(F (q)))



Dimensionally equivalent spaces 531

=
q log q + (1− q) log(1− q)
sq log ra + s(1− q) log rb

.

Further we have for q ∈ [0, (ra)s] = [0, c] where (ra)s + (rb)s = 1,
Dim(f(F (q))) = s

s = 1 with

Dim(f(F (q))) =
q log q + (1− q) log(1− q)
sq log ra + s(1− q) log rb

.

Similarly we have for q ∈ [(ra)s, 1] = [c, 1] where (ra)s + (rb)s = 1,
Dim(f(F (q))) = s

s = 1 with

Dim(f(F (q))) =
q log q + (1− q) log(1− q)
sq log ra + s(1− q) log rb

.

We note that f(F (q)) = F (q) and f(F (q)) = F (q) for q ∈ (0, 1). Further
f(F (q)) = F (q) and f(F (q)) = F (q) for q = 0 or q = 1 essentially in the
sense that they differ only for the end points of fundamental intervals
which do not affect the values of dimensions since the end points are at
most countable. It follows from the above facts with

q log q + (1− q) log(1− q)
sq log ra + s(1− q) log rb

=
q log q + (1− q) log(1− q)
q log(ra)s + (1− q) log(rb)s

= δ(q).

Remark 3.4. By comparing the above Theorem with the above
Proposition, we easily see that, for c + d = 1 where c, d are positive
real numbers, the the unit interval [0, 1] having the generalized dyadic
expansion and the coding space {0, 1}N with an ultra metric ρc,d are
dimensionally equivalent in the sense that the Hausdorff and packing
dimensions of its distribution sets coincide in each space. From the
proof of Theorem 3.1, we find a bi-Lipschitz map

f : Fα,β −→ {0, 1}N

from a totally disconnected Cantor set Fα,β such that 0 < α + β < 1
for positive real numbers α, β onto {0, 1}N with an ultra metric ρα,β.
Further {0, 1}N with the ultra metric ρc,d = ραs,βs where s is a positive
real number satisfying αs + βs = 1 with αs = c and βs = d is the
image of Fα,β under the function f which satisfies a bi-Hölder condition.
This means that {0, 1}N with the ultra metric ρc,d is the homeomorphic
image of Fα,β. Noting that the unit interval [0, 1] is connected and the
coding space with an ultra metric ρc,d such that c + d = 1 for positive
real numbers c, d is totally disconnected, we see that they are different in
topological sense. This means that dimensional equivalence does not give
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topological invariance. As a result, we see that there is no bi-Lipschitz
map

g : [0, 1] −→ {0, 1}N
from [0, 1] into {0, 1}N with a generalized ultra metric ρc,d with c+d = 1.

Conjecture 3.5. Since the map f such that f(x) = σ with {x} =⋂∞
k=0 Iσ|k where σ ∈ {0, 1}N gives dimensional equivalence for distribu-

tion sets in each space, we conjecture that f is a dimension-preserving
map from [0, 1] into {0, 1}N with ρc,d in the sense that dim(E) = dim(f(E))
and Dim(E) = Dim(f(E)) for E ⊂ [0, 1]. We note that a bi-Lipschitz
map is a dimension-preserving map. In this respect, we conjecture
that the above map f from [0, 1] into {0, 1}N with ρc,d is a dimension-
preserving map even though f is not a bi-Lipschitz map.
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