NONLINEAR MAPPINGS IN METRIC AND HAUSDORFF SPACES AND THEIR COMMON FIXED POINT

By Tanmoy Som*

Abstract: In the first section of this paper two common fixed point results for four nonlinear mappings which are pairwise commuting and only two of them being continuous have been given on a complete metric space and on a compact metric space respectively which generalize the results of Mukherjee [2] and Yeh [4]. Further two common fixed point theorems have been established for two finite families of nonlinear mappings, with only one family being continuous. In another section we extend Theorem 3 and Theorem 4 of Mukherjee [2] for common fixed point of four continuous mappings on a Hausdorff space and on a compact metric space respectively. In the same spaces, these two results have been further generalized for two finite families of continuous mappings.

1. Introduction

Mukherjee [2] proved following common fixed point theorem for a pair of commuting nonlinear mappings.

THEOREM A. Let f and g be mappings of a complete metric space into itself with f continuous. Let f and g commute with each other and $g(X) \subset f(X)$. Also let g sasitfy the following condition

$$\begin{array}{l} d(g(x),\ g(y)) \leq & a_1 d(g(x),\ f(x)) + a_2 d(g(y),\ f(y)) + a_3 d(g(x),\ f(y)) \\ & + a_4 d(g(y),\ f(x)) + a_5 d(f(x),\ f(y)) \end{array}$$

with $a_i \ge 0$ for all i and $a_1 + a_2 + a_3 + 2a_4 + a_5 < 1$, then f and g have a unique common fixed point in X.

And Yeh [4] proved a common fixed point result for three continuous mappings which goes as follows.

THEOREM B. Let E, F and T are three continuous self mappings of a com-

^{*}Work supported by CSIR-SRF-GRANT Ro. 9/13(28)/83/EMR-1.

plete metic space (X,d) satisfying the following conditions:

(1)
$$ET = TE$$
, $FT = TF$, $E(X) \subset T(X)$ and $F(X) \subset T(X)$,

(2)
$$d(Ex, Fy) \le a(d(Tx, Ty))d(Tx, Ty) + b(d(Tx, Ty))[d(Tx, Ex) + d(Ty, Fy)] + c(d(Tx, Ty))[d(Tx, Fy) + d(Ty, Ex)].$$

for all x, y \in X, where a, b and c are monotonically decreasing functions from R^+ into [0, 1] satisfying a(t)+2b(t)+2c(t)<1 for all $t\in R^+$, then E, F and T have a unique common fixed point.

In what follows we give our first common fixed point result for four mappings under some generalized conditions than that of Mukherjee [2] and Yeh [4].

THEOREM 1. Let f_i and g_i , (i=1,2) be four nonlinear self mappings of a complete metric space (X, d) with each f_i being continuous and let f_i and g_i satisfy the following conditions.

(3)
$$f_1g_2 = g_2f_1$$
, $f_2g_1 = g_1f_2$ and $g_i(X) \subset f_i(X)$ for $i=1$ and 2.

for all $x, y \in X$, where $a_j \le 0$ for $j = 1, \dots, 5$ and $\sum_{j=1}^{5} a_j + a_3 < 1$. Then all f_i and g_i have a unique common fixed point in X.

PROOF. Let for any arbitrary $x_0{\in}X$ $x_1{\in}X$ be such that $g_1(x_0)=f_1(x_1)=y_1$ (say). For this x_1 let $x_2{\in}X$ be such that $g_2(x_1)=f_2(x_2)=y_2$ (say) and so on. Therefore in general we have

$$\begin{split} &g_1(x_{2n})\!=\!f_1(x_{2n+1})\!=\!y_{2n+1}(\text{say}) \text{ and} \\ &g_2(x_{2n+1})\!=\!f_2(x_{2n+2})\!=\!y_{2n+2}(\text{say}), \ n\!=\!0, \ 1, \ \cdots. \end{split}$$

Now from (4),

$$\begin{split} d(y_3, & y_2) \!=\! d(g_1(x_2), & g_2(x_1)) \\ & \leq \!\! a_1 d(g_1(x_2), & f_2(x_2)) \!+\! a_2 d(g_2(x_1), & f_1(x_1)) \\ & +\! a_3 d(g_1(x_2), & f_1(x_1)) \!+\! a_4 d(g_2(x_1), & f_2(x_2)) \\ & +\! a_5 d(f_2(x_2), & f_1(x_1)) \end{split}$$

which on simplification gives,

$$d(y_3, \ y_2) \leq \frac{a_2 + a_3 + a_5}{1 - a_1 - a_2 d} (Y_2, \ y_1)$$

$$\leq \alpha d(y_2, y_1)$$
, where $\alpha = \frac{a_2 + a_3 + a_5}{1 - a_1 - a_3} < 1$.

Similarly in general, we get

$$\begin{array}{l} d(y_{2n},\ y_{2n+1}) \leq \alpha d(y_{2n-1},\ y_{2n}) \ \text{and} \\ d(y_{2n+1},\ Y_{2n+2}) \leq \alpha d(y_{2n},y_{2n+1}),\ n=1,\ 2,\ \cdots. \end{array}$$

Hence the sequence $\{y_n\}$ is Cauchy, since $\alpha < 1$, let $\{y_n\}$ converges to some to some $t \in X$ due to completeness of X. Therefore

$$\begin{split} &y_{2n+1}\!=\!g_1(x_{2n})\!=\!\!f_1(x_{2n+1})\!\longrightarrow\!\!t \text{ and } \\ &y_{2n+2}\!=\!g_2(x_{2n+1})\!=\!\!f_2(x_{2n+2})\!\longrightarrow\!\!t. \end{split}$$

Not since f_1 and f_2 are continuous, we have by (3) that

$$\begin{split} &g_1(f_2(x_{2n})) \!=\! f_2(g_1(x_{2n})) \!=\! f_2(y_{2n+1}) \!\longrightarrow\! f_2(t) \text{ and} \\ &g_2(f_1(x_{2n+1})) \!=\! f_1(g_2(x_{2n+1})) \!=\! f_1(y_{2n+2}) \!\longrightarrow\! f_1(t). \end{split}$$

Further denoting 2n by m, we have

$$\begin{split} &d(\mathbf{g}_1(f_2(\mathbf{x}_m)),\ \mathbf{g}_2(f_1(\mathbf{x}_{m+1}))\\ \leq &a_1d(\mathbf{g}_1(f_2(\mathbf{x}_m)),\ f_2(f_2(\mathbf{x}_m)))\\ &+a_2d(\mathbf{g}_2(f_1(\mathbf{x}_{m+1})),\ f_1(f_1(\mathbf{x}_{m+1})))\\ &+a_3d(\mathbf{g}_1(f_2(\mathbf{x}_m)),\ f_1(f_1(\mathbf{x}_{m+1})))\\ &+a_4d(\mathbf{g}_2(f_1(\mathbf{x}_{m+1})),\ f_2(f_2(\mathbf{x}_m)))\\ &+a_5d(f_2(f_2(\mathbf{x}_m)),\ f_1(f_1(\mathbf{x}_{m+1}))) \end{split}$$

On taking limits of both the sides of the above after a little simplification, we get

$$\begin{split} d(f_2(t),\ f_1(t)) \leq & a_1 d(f_2(t),\ f_2(t)) + a_2 d(f_1(t),\ f_1(t)) \\ &+ a_3 d(f_2(t),\ f_1(t)) + a_4 d(f_1(t),\ f_2(t)) \\ &+ a_5 d(f_2(t),\ f_1(t)) \end{split}$$

or, $(1-a_3-a_4-a_5)d(f_1(t), f_2(t)) \le 0$

but $1-a_3-a_4-a_5>0$ and therefore

$$d(f_1(t), f_2(t)) = 0$$
, i.e., $f_1(t) = f_2(t)$.

$$\begin{split} \text{Now, } & d(g_1(f_2(x_m)), \ g_2(t)) \leq & a_1 d(g_1(f_2(x_m)), \ f_2(f_2(x_m))) \\ & + a_2 d(g_2(t), \ f_1(t)) + a_3 d(g_1(f_2(x_m)), \ f_1(t)) \\ & + a_4 d(g_2(t), \ f_2(f_2(x_m))) + a_5 d(f_2(f_2(x_m)), \ f_1(t)) \end{split}$$

This on using (3) viz. $g_1f_2=f_2g_1$ and then on taking limits of both the sides gives

$$\begin{split} d(f_2(t), \ \ g_2(t)) \leq & a_1 d(f_2(t), \ f_2(t)) + a_2 d(g_2(t), \ f_1(t)) \\ + & a_3 d(f_2(t), \ f_1(t)) + a_4 d(g_2(t), \ f_2(t)) \\ + & a_5 d(f_2(t), \ f_1(t)) \end{split}$$

or, $(1-a_2-a_4)d(f_2(t), g_2(t)) \le 0$ since $1-a_2-a_4 > 0$, we have $d(f_2(t), g_2(t)) = 0$ or, $g_2(t) = f_2(t) = f_1(t)$. Further

$$\begin{split} d(g_1(t), \ g_2(f_1(x_{m+1})) \leq & a_1 d(g_1(t), \ f_2(t)) \\ + & a_2 d(g_2(f_1(x_{m+1})), \ f_1(f_1(x_{m+1}))) + a_3 d(g_1(t), \ f_1(f_1(x_{m+1}))) \\ + & a_4 d(g_2(f_1(x_{m+1})), \ f_2(t)) + a_5 d(f_2(t), \ f_1(f_1(x_{m+1}))) \end{split}$$

Using $g_2f_1=f_1g_2$ in the above we have in the limiting case

$$\begin{split} d(\boldsymbol{g}_1(t), \ f_1(t)) \leq & a_1 d(\boldsymbol{g}_1(t), \ f_2(t)) + a_2 d(f_1(t), \ f_1(t)) \\ & + a_3 d(\boldsymbol{g}_1(t), \ f_1(t)) + a_4 d(f_1(t), \ f_2(t)) \\ & + a_5 d(f_2(t), \ f_1(t)) \end{split}$$

or, $(1-a_1-a_3)d(g_1(t), f_1(t)) \le 0$ but $1-a_1-a_3 < 0$, therefore we have $d(g_1(t), f_1(t)) = 0$, i.e., $g_1(t) = f_1(t)$.

Thus we have

$$g_1(t) = f_1(t) = f_2(t) = g_2(t)$$
 (5)

Next we show that $g_i(t) = f_i(t)$, i, j=1, 2 is the unique common fixed point of f_i and g_i .

By (3),
$$f_2(g_1(t)) = g_1(f_2(t)) = g_1(g_1(t))$$
, therefore
$$d(g_1(g_1(t)), g_2(t)) \leq a_1 d(g_1(g_1(t)), f_2(g_1(t))) + a_2 d(g_2(t), f_1(t)) + a_3 d(d_1(g_1(t)), f_1(t)) + a_4 d(g_2(t), f_2(g_1(t))) + a_5 d(f_2(g_1(t)), f_1(t))$$

or, $(1-a_3-a_4-a_5)d(g_1(g_1(t)), g_1(t)) \le 0$ as $1-a_3-a_4-a_5 > 0$, we have $d(g_1(g_1(t)), g_1(t)) = 0$, i.e., $g_1(g_1(t)) = g_1(t)$.

Further since

$$\boldsymbol{f}_{1}(\boldsymbol{g}_{1}(t)) \!=\! \boldsymbol{f}_{1}(\boldsymbol{g}_{2}(t)) \!=\! \boldsymbol{g}_{2}(\boldsymbol{f}_{1}(t)) \!=\! \boldsymbol{g}_{2}(\boldsymbol{g}_{1}(t))$$

then putting x=t and $y=g_1(t)$ in (4), we can similarly show that $g_2(g_1(t))=g_1(t)$. Thus $f_1(g_1(t))=f_1(g_2(t))=g_2(f_1(t))=g_2(g_1(t))=g_1(t)$ and $f_2(g_1(t))=g_1(f_2(t))=g_1(g_1(t))=g_1(t)$. Hence $g_1(t)$ is a common fixed point of g_1 , g_2 , f_1 and f_2 . Therefore by (5) we claim that $g_2(t)=f_2(t)=f_1(t)=g_1(t)$ is a common fixed point of g_1 , g_2 , f_1 and f_2 . To show uniqueness let $g_1(s)=g_2(s)=f_1(s)=f_2(s)$ be another common fixed point of g_1 , g_2 , f_1 and f_2 , then

$$\begin{split} d(\boldsymbol{g}_1(t), \ \ \boldsymbol{g}_2(s)) \leq & a_1 d(\boldsymbol{g}_1(t), \ f_2(t)) + a_2 d(\boldsymbol{g}_2(s), \ f_1(s)) \\ & + a_3 d(\boldsymbol{g}_1(t), \ f_1(s)) + a_4 d(\boldsymbol{g}_2(s), \ f_2(t)) \\ & + a_5 d(f_2(t), \ f_1(s)) \end{split}$$

or, $(1-a_3-a_4-a_5)d(g_1(t), g_2(s))\leq 0$, since $1-a_3-a_4-a_5>0$, we have the required result.

Further if we take (x, d) to be a compact metric space in the above theorem, we have the following result, which we state without proof.

Nonlinear mappings in metric and Hausdorff spaces and their common fixed point 101

THEOREM 2. Let f_i and g_i , i=1, 2 be four nonlinear self mappings of a compact metric space (X, d) with each f_i being continuous. Let f_i and g_i satisfy the following conditions

(6)
$$f_1g_2 = g_2f_1$$
, $f_2g_1 = g_1f_2$ and $g_i(X) \subset f_i(X)$ for $i=1$ and 2

for all x, y $\in X$, where $a_j \ge 0$, j=1, ..., 5 with $\sum_{j=1}^5 a_j + a_3 = 1$. Then all f_i and g_i have a unique common fixed point in X.

REMARK 1. Taking $f_1 = f_2$ and $g_1 = g_2$, we get Theorem 1 and Theorem 2 of Mukherjee [2] as corollaries of our Theorem 1 and Theorem 2 respectively.

REMARK 2. Taking $g_1 = E$, $g_2 = F$, $f_1 = f_2 = T$ and $a_5 = a$, $a_1 = a_2 = b$ and $a_3 = a_4 = c$ in our Theorem 1, we have a generalized result of Yeh [4] with a simplification that a, b and c are real constants there. If we further take g_1 and g_2 continuous, then the proof becomes much easier.

THEOREM 3. Let $\{f_i\}$ and $\{g_i\}$, $i=1, 2, \cdots, k, k \in \mathbb{N}$ fixed, be two finite families of nonlinear self mappings of a complete metric space (X, d) with each f_i being continuous. Let f_i and g_i satisfy the following conditions

(8) $f_i g_j = g_k f_i$, $i \neq j$ for i, j = 1, 2, \cdots , k, $g_i(X) \subset f_i(X)$ for each i and that a pair of maps f_i and g_j , $i \neq j$, is one to one,

$$(9) \ d(g_i(x), g_j(y)) \leq a_1 d(g_i(x), f_j(x)) + a_3 d(g_j(y), f_i(y)) \\ + a_3 d(g_i(x), f_i(y)) + a_4 d(g_j(y), f_j(x)) \\ + a_5 d(f_i(x), f_i(y))$$

for all x, y $\in X$, i, j=1, 2, ..., k with $i\neq j$, where $a_p\geq 0$, p=1, ..., 5 with $\sum_{p=1}^{n}a_p+a_3<1$. Then all the mappings of both the families $\{f_i\}$ and $\{g_i\}$ have a unique common fixed point in X.

PROOF. Let g_1 and f_2 are one to one. Consider f_1 , g_1 and f_2 , g_2 the four mappings satisfying (8) and (9), then by Theorem 1 we have a unique common fixed point for this set of four mappings. Let the fixed point be $g_1(t)$. Similarly taking f_1 , g_1 and f_3 , g_3 to be the next set of four mappings satisfying (8) and (9), we get $g_1(s)$ (say) as the unique common fixed point of f_1 , g_1 and f_3 , g_3 by Theorem 1. Now $g_1f_2=f_2g_1$ gives that

$$\begin{split} &g_1(f_2(g_1(s)))\!=\!\!f_2(g_1(g_1(s)))\\ &g_1(g_1(f_2(s)))\!=\!\!f_2(g_1(s))\!=\!g_1(f_2(s)) \end{split}$$

since g_1 is one we therefore have

$$g_1(f_2(s)) = f_2(s)$$

i.e., $f_2(s)$ is also a fixed point of \mathbf{g}_1 . Then by the uniqueness of the common fixed point of f_1 , \mathbf{g}_1 , \mathbf{g}_2 , f_2 we have $f_2(s)=f_2(t)$ (from (5)). Then it follows from f_2 being one to one that s=t and thus both the sets of four mappings have a unique common fixed point, viz., $f_i(t)=\mathbf{g}_j(t)$, i,j=1,2,3. Similarly for every pair of four mappings f_1 , g_1 , f_2 , g_2 and f_1 , g_1 , f_i , g_i where f_i and g_i vary over the rest of the members of the two families f_i and g_i of mappings respectively, we get the same unique common fixed point and hence the result.

In a compact metric space we have the following result.

THEOREM 4. Let $\{f_i\}$ and $\{g_i\}$, $i=1, 2, \cdots, k$, $k \in \mathbb{N}$ fixed, be two finite families of nonlinear self mappings of a compact metric space (X, d) with each f_i being continuous. Let f_i and g_i satisfy the following conditions.

(10) $f_i g_j = g_j f_i$, $i \neq j$ for i, $j = 1, 2, \cdots$, k, $g_i(X) \subset f_i(X)$ for each i and that a pair of maps f_i and g_j , $i \neq j$ is one to one.

for all $x, y \in X$, $i, j=1, 2, \cdots$, k with $i \neq j$, where $a_p \ge 0$ with $\sum_{p=1}^{5} a_p + a_2 = 1$. Then all the mappings of both the families $\{f_i\}$ and $\{g_i\}$ have a unique common fixed point in X.

2. In this section we generalize Theorem 3 and theorem 4 of Mukherjee [2] for common fixed point of four mappings on a Hausdorffspace and on a compact metric space respectively. Further the results have been generalized for two finite families of continuous mappings.

THEOREM 5. Let for i=1,2 f_i and g_i be four continuous mappings of a Hausdorff space X into itself. Let $f_1g_2=g_2f_1$, $f_2g_1=g_1f_2$ and $g_i(X) \subset f_i(X)$ for each i. Let $F: X \times X \longrightarrow R^+$ be a continuous function satisfying

$$(12) \ F(\textbf{\textit{g}}_{1}(\textbf{\textit{x}}), \ \textbf{\textit{g}}_{2}(\textbf{\textit{y}})) \leq \frac{\alpha F(f_{1}(\textbf{\textit{y}}), \ \textbf{\textit{g}}_{2}(\textbf{\textit{y}})) \left[1 + F(f_{2}(\textbf{\textit{x}}), \ \textbf{\textit{g}}_{1}(\textbf{\textit{x}}))\right]}{1 + F(f_{2}(\textbf{\textit{x}}), \ f_{1}(\textbf{\textit{y}}))}$$

$$+\beta F(f_{2}(x), f_{1}(y))$$

for all x, y $\in X$, where α , $\beta \ge 0$ with $\alpha + \beta < 1$. And F(u, u) = 0 for all $u \in X$. For any $x_0 \in X$, we define a sequence $\{y_u\}$ as follows

Let $x_1 \in X$ be such that $g_1(x_0) = f_1(x_1) = y_1$, and similarly $x_2 \in X$ be such that $g_2(x_1) = f_2(x_2) = y_2$, and so on.

In general
$$g_1(x_{2n}) = f_1(x_{2n+1}) = y_{2n+1}$$
, $g_2(x_{2n+1}) = f_2(x_{2n+2}) = y_{2n+2}$, $n = 0, 1, \cdots$.

If the sequence $\{y_n\}$ has a convergent subsequence of the type $\{y_{n_k+p}\}$, where $p=0,\ 1$ and 2, converging to some $t \in X$ for each p, then $f_i(t)=g_j(t)$, $i,\ j=1,\ 2$ is the unique common fixed point of all f_i and g_j .

PROOF. By omitting point and relabelling if necessary, we may suppose that either all the $n_k s$ are all even or all odd. Let us suppose that each n_k is even. Denoting n_k by m, we have

$$\begin{array}{lll} f_1(x_m) & \longrightarrow t, \ f_2(x_{m+1}) & \longrightarrow t, \ f_1(x_{m+2}) & \longrightarrow t \ \text{and} \\ g_1(x_{m-1}) & \longrightarrow t, \ g_2(x_m) & \longrightarrow t \ \text{and} \ g_1(x_{m+1}) & \longrightarrow t. \end{array}$$

Now, since f_i , g_i , $i \neq j$ for i, j=1, 2 commute, we get

$$f_1(g_2(x_m)) = g_2(f_1(x_m))$$
 and $f_2(g_1(x_{m+1})) = g_1(f_2(x_{m+1}))$.

Taking limits of the above as each f_i and g_i is continuous, we have

$$f_1(t) = g_2(t)$$
 and $f_2(t) = g_1(t)$

We claim that $g_1(t) = g_2(t)$. For if it is not so, then by (12), we have

$$\begin{split} F(\mathbf{g}_1(t), \ \mathbf{g}_2(t)) \leq & \frac{\alpha \, F(f_1(t), \ \mathbf{g}_2(t)) \, [1 + F(f_2(t), \ \mathbf{g}_1(t))]}{1 + F(f_2(t), \ f_1(t))} \\ & + \beta \, F(f_2(t), \ f_1(t)) \end{split}$$

or, $(1-\beta)F(\mathbf{g}_1(t), \mathbf{g}_2(t)) \leq 0$ but $1-\beta>0$, therefore $F(\mathbf{g}_1(t), \mathbf{g}_2(t)) = 0$ i.e. $\mathbf{g}_1(t) = \mathbf{g}_2(t)$, and hence

(13)
$$f_i(t) = g_j(t)$$
, i , $j=1$, 2, ...

Now

$$\begin{split} F(\boldsymbol{g}_{1}(\boldsymbol{g}_{1}(t)), \ \boldsymbol{g}_{2}(t)) \leq & \frac{\alpha \, F(f_{1}(t), \ \boldsymbol{g}_{2}(t)) \, [1 + F(f_{2}(\boldsymbol{g}_{1}(t)), \ \boldsymbol{g}_{1}(\boldsymbol{g}_{1}(t)))]}{1 + F(f_{2}(\boldsymbol{g}_{1}(t)), \ f_{1}(t))} \\ + & \beta \, F(f_{2}(\boldsymbol{g}_{1}(t)), \ f_{1}(t)) \end{split}$$

or, $(1-\beta)F(\mathbf{g}_1(\mathbf{g}_1(t)), \ \mathbf{g}_1(t)) \leq 0$, but $(1-\beta)>0$, therefore $\mathbf{g}_1(\mathbf{g}_1(t)) = \mathbf{g}_1(t)$. Further

$$\begin{split} F(\boldsymbol{g}_1(t), \ \ \boldsymbol{g}_2(\boldsymbol{g}_1(t))) \leq & \frac{\alpha \, F(f_1(\boldsymbol{g}_1(t)), \ \ \boldsymbol{g}_2(\boldsymbol{g}_1(t))) \, [1 + F(f_2(t), \ \ \boldsymbol{g}_1(t))]}{1 + F(f_2(t), \ f_1(\boldsymbol{g}_1(t)))} \\ + & \beta \, F(f_2(t), \ f_1(\boldsymbol{g}_1(t))) \end{split}$$

Using $f_1(\mathbf{g}_1(t)) = f_1(\mathbf{g}_2(t)) = \mathbf{g}_2(f_1(t)) = \mathbf{g}_2(\mathbf{g}_1(t))$ and $f_2(t) = \mathbf{g}_1(t)$ in the above, we get

$$(1-\beta) \ F(g_1(t), \ g_2(g_1(t))) \le 0$$

and therefore $g_2(g_1(t)) = g_1(t)$, since $\beta < 1$.

New,

$$\begin{split} &f_1(\boldsymbol{g}_1(t)) \!=\! f_1(\boldsymbol{g}_2(t)) \!=\! \boldsymbol{g}_2(f_1(t)) \!=\! \boldsymbol{g}_2(\boldsymbol{g}_1(t)) \!=\! \boldsymbol{g}_1(t) \\ &f_2(\boldsymbol{g}_1(t)) \!=\! \boldsymbol{g}_1(f_2(t)) \!=\! \boldsymbol{g}_1(\boldsymbol{g}_1(t)) \!=\! \boldsymbol{g}_1(t). \end{split}$$

and

Thus $g_1(t)$ is the common fixed point of f_1 , f_2 , g_1 , g_2 and therefore from (13) $f_i(t) = g_j(t)$, i, j = 1, 2 is a common fixed point of f_1 , f_2 , g_1 , g_2 . To show uniqueness let $f_i(t) = g_j(t) = z$ (say) and $f_i(s) = g_j(s) = q$ (say) be two common fixed points of all f_i and g_i . Then from (12) we have

$$\begin{split} F(\boldsymbol{g}_1(\boldsymbol{z}), \ \boldsymbol{g}_2(\boldsymbol{q})) \leq & \frac{\alpha \, F(f_1(\boldsymbol{q}), \ \boldsymbol{g}_2(\boldsymbol{q})) \, [1 + F(f_2(\boldsymbol{z}), \ \boldsymbol{g}_1(\boldsymbol{z}))]}{1 + F(f_2(\boldsymbol{z}), \ f_1(\boldsymbol{q}))} \\ & + \beta \, F(f_2(\boldsymbol{z}), \ f_1(\boldsymbol{q})) \end{split}$$

or, $F(z, q) \leq \beta F(z, q)$

Since $\beta < 1$, we get that z=q and hence the result.

In a compact metric space we have the following result.

THEOREM 6. Let f_i and g_i , i=1, 2, be four continuous mappings of a compact metric space (X, d) into itself. Let $f_1g_2=g_2f_1$, $f_2g_1=g_1f_2$ and $g_i(X) \subset f_i(X)$ for each i. Let f_i and g_i satisfy

$$\begin{split} d(\boldsymbol{g}_1(\boldsymbol{x}), \ \boldsymbol{g}_2(\boldsymbol{y})) \leq & \frac{\alpha d(f_1(\boldsymbol{y}), \ \boldsymbol{g}_2(\boldsymbol{y}))[1 + d(f_2(\boldsymbol{x}), \ \boldsymbol{g}_1(\boldsymbol{x}))]}{1 + d(f_2(\boldsymbol{x}), \ f_1(\boldsymbol{y}))} \\ + & \beta \, d(f_2(\boldsymbol{x}), \ f_1(\boldsymbol{y})) \end{split}$$

for all x, y $\in X$, where α , $\beta \ge 0$ with $\alpha + \beta = 1$. Then all f_i and g_i have a unique common fixed point in X.

REMARK 3. If we take $f_1 = f_2$ and $g_1 = g_2$ in Theorems 5 and 6, we get Theorems 3 and 4 or Mukherjee |2| respectively as our corollaries.

THEOREM 7. Let for $i=1, 2, \cdots, k$, $k \in \mathbb{N}$ fixed, $\{f_i\}$ and $\{g_i\}$ be two finite families of continuous mappings on a Hausdorff space X into itself. Let $f_ig_j=g_jf_i$, $i\neq j$ for $i, j=1, 2, \cdots, k$, and $g_i(X) \subset f_i(X)$ for each i. Let $F: X \times X \longrightarrow \mathbb{R}^+$ be a continuous function satisfying

$$F(g_i(x), \ g_j(y)) \leq \frac{\alpha \, F(f_i(y), \ g_j(y)) \, [1 + F(f_j(x), \ g_i(x))]}{1 + F(f_i(x), \ f_i(y))}$$

Nonlinear mappings in metric and Hausdorff spaces and their common fixed point 105

$$+\beta F(f_i(x), f_i(y))$$

for all x, y \in X and for each pair (i, j) with $i \neq j$, where α , $\beta \geq 0$ with $\alpha + \beta < 1$, and F(u, u) = 0 for all $u \in$ X. For any $x_0 \in$ X and for each pair (i, j) with $i \neq j$, define a sequence $\{y_n\}$ as follows let $x_1 \in$ X be such that $g_i(x_0) = f_i(x) = y_1$, let $x_2 \in$ X be such that $g_i(x_1) = f_i(x_2) = y_2$ and so on.

In general
$$g_i(x_{2n}) = f_i(x_{2n+1}) = y_{2n+1},$$
 $g_i(x_{2n+1}) = f_i(x_{2n+2}) = y_{2n+2}, n = 0, 1, \cdots.$

If this sequence $\{y_n\}$ has a convergent subsequence of the type $\{y_{n_k+p}\}$, where $p=0,\ 1$ and 2, converging to some $t\in X$ for each p, and if a pair of maps f_i and g_j , $i\neq j$, is one to one, then $f_i(t)=g_j(t)$, $i,\ j=1,\ 2,\ \cdots$, k is the unique common fixed point of all f_i and g_i .

PROOF. The proof of the above theorem follows from that of Theorem 5 and Theorem 3.

In a compact metric space (X, d) we have the following result.

THEOREM. 8. Let for $i=1,\ 2,\ \cdots,\ k,\ k{\in}N$ fixed, $\{f_i\}$ and $\{g_i\}$ be two finite families of continuous mappings on a compact metric space $(X,\ d)$ into itself. Let $f_ig_j=g_jf_i,\ i{\neq}j$ for $i,\ j{=}1,\ 2,\ \cdots.\ k,\ and\ g_i(X){\subset}f_i(X)$ for each i. Let for each pair $(i,\ j)$ with $i{\neq}j$ f_i and g_j satisfy

$$\begin{split} d(g_i(x), \ g_j(y) \leq & \frac{\alpha \ d(f_i(y), \ g_j(y)) \left[1 + d(f_j(x), \ g_i(x)) \right]}{1 + d(f_j(x), \ f_i(y))} \\ & + \beta \ d(f_i(x), \ f_i(y)) \end{split}$$

for all $x, y \in X$, where α , $\beta \ge 0$ with $\alpha + \beta = 1$. Further if a pair of maps f_i and g_i , $i \ne j$, is one to one then all f_i and g_i have a unique common fixed point in X.

REFERENCES

- Jungck, G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261—263.
- [2] Mukherjee, R.N., Common fixed opoints of some nonlinear mappings, Indian J. Pure Appl. Math., 12(8)(1981), 930-933.
- [3] Wong, C.S., Common fixed point theorems of two mappings, Pac. J. Math., 48(1973), 299-312.

[4] Yeh, C.C., Common fixed point of continuous mappings in metric spaces, Publ. Inst. Math. (Beograd) (N.S.) 27(41) (1980), 21-25.

> Applied Maths Section, School of Applied Sciences, Institute of Technology, Banaras Hindu University, Varanasi-221005, INDIA.