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SUFFICIENT CONDITION FOR THE DIFFERENTIABILITY

OF THE RIESZ-NÁGY-TAKÁCS SINGULAR FUNCTION

In-Soo Baek

Abstract. We give some sufficient conditions for the null and infinite
derivatives of the Riesz-Nágy-Takács (RNT) singular function. Using
these conditions, we show that the Hausdorff dimension of the set of the
infinite derivative points of the RNT singular function coincides with its
packing dimension which is positive and less than 1 while the Hausdorff
dimension of the non-differentiability set of the RNT singular function
does not coincide with its packing dimension 1.

1. Introduction

Many authors [4–7, 13] studied the characterization of the non-differenti-
ability set of the Cantor singular function, which can be defined by the self-
similar measure supported on the Cantor set which satisfies the SSC (strong
separation condition) [3], and computed the Hausdorff and packing dimensions
of the set of its infinite derivative points and its non-differentiability set. In
particular, it was shown [4–6, 13] that the Hausdorff dimension of the non-

differentiability set of the Cantor singular function is ( log 2
log 3 )

2 while its packing

dimension is log 2
log 3 . Further it also can be shown that the Hausdorff dimension

log 2
log 3 of the set of the infinite derivative points of the Cantor singular function

coincides with its packing dimension since the set of the infinite derivative
points is the relative complement of the non-differentiability set with respect
to the Cantor set [5]. Recently, using the metric number theory, J. Parad́ıs
et al. [11] checked if the derivative of the Riesz-Nágy-Takács (RNT) singular
function, which can be defined by the self-similar measure supported on the
unit interval which satisfies the OSC (open set condition) [3], is null or infinite
at a point when the singular function has a derivative at the point. In fact,
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they did not use the sufficient conditions for its null derivative and its infinite
derivative since they checked it under the condition that the RNT singular
function has a derivative. More recently, we [2] gave necessary conditions for
the null derivative and the infinite derivative of the RNT singular function and
a sufficient condition for its non-differentiability using the multifractal relation
between the distribution set [2] and the local dimension set [2, 3, 9] by a self-
similar measure related to the construction of the RNT singular function. As
a result, we generalized their results. Further we found upper and lower bound
for Hausdorff dimension dim(N) and packing dimension Dim(N) for the non-
differentiability set N of the RNT singular function. Also we found upper
and lower bound for Hausdorff dimension dim(D∞) and packing dimension
Dim(D∞) for the set D∞ of its infinite derivative points. More concretely,

there is a solution r(1) of the equation g(r, p) = r log p+(1−r) log(1−p)
r log a+(1−r) log(1−a) = 1 with

respect to r where a, p generate the RNT singular function. For such equation
g(r, p) and the solution r(1), we had:

0 < g(r(1), r(1)) ≤ dim(N) ≤ Dim(N) = 1,

and

dim(D∞) ≤ Dim(D∞) ≤ g(r(1), r(1)) < 1.

Naturally we compare the geometrical structure of the set of the infinite de-
rivative points with that of the non-differentiability set. For this, we used to
use the dimension regularity [12] that the packing dimension of a set coincides
with its Hausdorff dimension. In this paper, we prove that the set of the in-
finite derivative points is dimension regular while the non-differentiability set
is not dimension regular. Although many approaches to study the differentia-
bility of the RNT singular function have been tried, nothing is known about
the sufficient conditions for its null derivative and its infinite derivative. In
this paper, we give sufficient conditions for the infinite derivative and the null
derivative of the RNT singular function using digital distribution of a code
which represents each point in the unit interval. Using the sufficient condition
for the infinite derivative, we find that the Hausdorff dimension of the set of
the infinite derivative points is the same as the aforementioned upper bound
for its packing dimension, which implies that the set of the infinite derivative
points is dimension regular, which is our main result. Explicitly,

dim(D∞) = Dim(D∞) = g(r(1), r(1)).

We show that the derivative of the RNT singular function which is not the
identity function is zero almost everywhere using the fact that every normal
point [3, 8, 10] satisfies the sufficient condition for the null derivative. Further,
using the sufficient condition for the null derivative, we show that the Hausdorff
dimension of the non-differentiability set of the RNT singular function is less
than 1, which implies that the non-differentiability set is not dimension regular,
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which is our another main result. Explicitly,

g(r(1), r(1)) ≤ dim(N) < Dim(N) = 1.

Conclusively, noting our two main results, we find that the RNT singular
function and the Cantor singular function have similar properties: the set of
infinite derivative points is dimension regular and the non-differentiability set
is not dimension regular.

2. Preliminaries

Let N be the set of positive integers. For the probability vectors (a1, a2) ∈
(0, 1)2 and p = (p1, p2) ∈ (0, 1)2,

[0, 1] =

2
⋃

k=1

Sk([0, 1]),

where S1(x) = a1x and S2(x) = a2x+ a1 and the self-similar measure [3,9] γp
is the unique probability measure on the unit interval [0, 1] such that

γp =

2
∑

i=1

piγp ◦ S−1
i .

Each point t(∈ [0, 1]) has a code ω = (k1, k2, . . .) ∈ Σ = {1, 2}N satisfying

{t} =

∞
⋂

n=1

Kω|n

forKω|n = Kk1,...,kn
= Sk1

◦· · ·◦Skn
([0, 1]) [9] where ω|n denotes the truncation

of ω to the nth place. In such case, we sometimes write π(ω) for such t using
the natural projection π : Σ → [0, 1]. We also write the cylinder cn(t) for such
Kω|n and denote ω(l) = kl. We note that ω|l = k1, . . . , kl = ω(1), . . . , ω(l).
We also note that if t is not an end point of cn(t), then it has a unique code ω

where π(ω) = t.
For the code ω ∈ {1, 2}N, we define the number of the digit k in ω|n

nk(ω|n) = ♯{1 ≤ l ≤ n : ω(l) = k}

for k = 1, 2 and denote A(xn(ω)) the set of the accumulation points [3] of the
probability vector sequence {xn(ω)}

∞

n=1 where

xn(ω) =

(

n1(ω|n)

n
,
n2(ω|n)

n

)

for the code ω. We also define A1(xn(ω)) to be the projection of A(xn(ω)) to
the first axis. Therefore A1(xn(ω)) is the set of the accumulation points of the
sequence

{

n1(ω|n)

n

}∞

n=1
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for the code ω. Noting A1(xn(ω)) = [x, y] ⊂ [0, 1] since A(xn(ω)) is a contin-
uum [3, 10], we can also define a distribution set

F [x, y] = {ω : A1(xn(ω)) = [x, y]}.

3. Relation between distribution and differentiability

It is not difficult to show that the RNT function [1, 2, 11] can be defined as

f(t) = γp([0, t])

for t ∈ [0, 1], using the self-similar measure γp on the unit interval [0, 1] where
the probability vector p = (p1, p2) ∈ (0, 1)2. We denote zk(ω, n) the position
of the n-th occurrence of entry k in the code ω similarly as in [13].

Remark 1. From the same arguments in [13], we easily see that for each k ∈
{1, 2}

limn→∞

nk(ω|n)

n
= limn→∞

n

zk(ω, n)

and

limn→∞

nk(ω|n)

n
= limn→∞

n

zk(ω, n)
.

Remark 2. We note that A1(xn(ω)) for ω satisfying π(ω) = t where t is an end
point of cn(t) is {0} or {1}. Further the RNT function f satisfying a1 6= p1 is
not differentiable at the end point [2] and the end-points for the cylinders are
countable. Therefore we can disregard them for the calculation of the Hausdorff
and packing dimensions of the non-differentiability set.

From now on, if there is no particular mention, we only consider ω satisfying
π(ω) = t where t is not an end point of cn(t).

Lemma 1. Let {dn} be a real sequence and t0 be a real number. For t > t0,

we assume that there is a positive integer n(t) such that H(t) ≤ dn(t) for the

real valued function H(t). We also assume that n(t) ↑ ∞ as t ↓ t0. Then we

have

limt↓t0H(t) ≤ limn→∞dn.

Similarly for t < t0, we assume that there is a positive integer n(t) such that

H(t) ≤ dn(t) for the real valued function H(t). We also assume that n(t) ↑ ∞
as t ↑ t0. Then we have

limt↑t0H(t) ≤ limn→∞dn.

Proof. Assume that n(t) ↑ ∞ as t ↓ t0 and there is a positive integer n(t) such
that H(t) ≤ dn(t) for the real valued function H(t). For any δ > 0, noting
n(t) ≥ n(t0 + δ) for t0 < t ≤ t0 + δ, we have

sup
t0<t≤t0+δ

H(t) ≤ sup
t0<t≤t0+δ

dn(t) ≤ sup
n≥n(t0+δ)

dn.
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This gives

limt↓t0H(t) = lim
δ↓0

sup
t0<t≤t0+δ

H(t) ≤ lim
δ↓0

sup
n≥n(t0+δ)

dn = limn→∞dn.

Similarly the dual part follows. �

From now on we assume that p1

a1

> 1 which implies p2

a2

< 1 for convenience

since the following theorems and corollary hold for the condition p1

a1

< 1 simi-
larly.

Theorem 2. Let A1(xn(ω)) = [x, y] with 0 < x ≤ y < r1 where

(
p1

a1
)r1(

p2

a2
)1−r1 = 1.

If

1 ≤
y

x
<

log( p1

a1

)y( p2

a2

)1−y

log a2
+ 1

and

1 ≤
1− x

1− y
<

log( p1

a1

)y( p2

a2

)1−y

log a1
+ 1,

then

f ′(π(ω)) = 0.

Proof. Consider π(ω′) = t′ > π(ω) = t. Then there exists n such that ω′|n =
ω|n and ω′|(n+1) 6= ω|(n+1) with In = π(ω|n). Let ǫ > 0 such that y+ǫ < r1.
Since ω ∈ F [x, y] that is

x = limn→∞

n

z1(ω, n)
≤ limn→∞

n

z1(ω, n)
= y,

z1(ω,n+1)
z1(ω,n) < y

x
+ ǫ for all large n. Clearly for all large n

z1(ω,n)
∏

l=1

(
pω(l)

aω(l)
)1/z1(ω,n) = (

p1

a1
)

n
z1(ω,n) (

p2

a2
)

z1(ω,n)−n

z1(ω,n) ≤ (
p1

a1
)y+ǫ(

p2

a2
)1−(y+ǫ)

since

limn→∞

n

z1(ω, n)
≤ y.

For Im = Kω|m, so satisfying
⋂

∞

m=1 Im = {t}, we have for all large n

f(π(ω′))− f(π(ω))

π(ω′)− π(ω)
≤

|f(Iz1(ω,n)−1)|

a
z1(ω,n+1)−z1(ω,n)
2 a1|Iz1(ω,n)−1|

=
1

p1a
z1(ω,n+1)−z1(ω,n)
2

z1(ω,n)
∏

l=1

pω(l)

aω(l)

=
1

p1
(

1

a
z1(ω,n+1)

z1(ω,n)
−1

2

((
p1

a1
)

n
z1(ω,n) (

p2

a2
)

z1(ω,n)−n

z1(ω,n) )z1(ω,n)
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≤
1

p1
(

1

a
y
x
+ǫ−1

2

(
p1

a1
)y+ǫ(

p2

a2
)1−(y+ǫ))z1(ω,n).

This and the above lemma give for t = π(ω) and t′ = π(ω′),

0 ≤ limt′↓t

f(t′)− f(t)

t′ − t
≤ limn→∞

1

p1
(

1

a
y
x
−1

2

(
p1

a1
)y(

p2

a2
)1−y)z1(ω,n) = 0

since y

x
<

log(
p1
a1

)y(
p2
a2

)1−y

log a2

+ 1 ⇐⇒ 1

a
y
x

−1

2

( p1

a1

)y( p2

a2

)1−y < 1 and z1(ω, n) ↑ ∞ as

n ↑ ∞.
Now, since ω ∈ F [x, y] that is

x = limn→∞

n

z1(ω, n)
≤ limn→∞

n

z1(ω, n)
= y,

we have

1− y = limn→∞

n

z2(ω, n)
= 1− limn→∞

n

z1(ω, n)

≤ limn→∞

n

z2(ω, n)
= 1− limn→∞

n

z1(ω, n)
= 1− x.

Therefore z2(ω,n+1)
z2(ω,n) < 1−x

1−y
+ ǫ for all large n. Clearly for all large n

z2(ω,n)
∏

l=1

(
pω(l)

aω(l)
)1/z2(ω,n) = (

p1

a1
)

z2(ω,n)−n

z2(ω,n) (
p2

a2
)

n
z2(ω,n) ≥ (

p1

a1
)x−ǫ(

p2

a2
)1−(x−ǫ)

since

limn→∞

n

z2(ω, n)
≤ 1− x.

Similarly for t′ < t, by

1 ≤
1− x

1− y
<

log( p1

a1

)y( p2

a2

)1−y

log a1
+ 1,

0 ≤ limt′↑t

f(t′)− f(t)

t′ − t
≤ limn→∞

1

p2
(

1

a
1−x
1−y

−1

1

(
p1

a1
)y(

p2

a2
)1−y)z2(ω,n) = 0

follows from the similar arguments above. �

Remark 3. In the above theorem,

min

{

log( p1

a1

)y( p2

a2

)1−y

log a2
,
log( p1

a1

)y( p2

a2

)1−y

log a1

}

> 0

since ( p1

a1

)y( p2

a2

)1−y < 1 from y < r1.

Remark 4. For every normal point [3, 8, 10] π(ω), the derivative of the RNT
function satisfying a1 6= p1 at π(ω) is 0 since A1(xn(ω)) = {a1} and a1 < r1.
This also gives a direct proof that the derivative of the RNT function satisfying
a1 6= p1 is zero almost everywhere.
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Dually we have a sufficient condition for the infinite derivative. We need the
following dual lemma without proof.

Lemma 3. Let {dn} be a real sequence and t0 be a real number. For t > t0,

we assume that there is a positive integer n(t) such that H(t) ≥ dn(t) for the

real valued function H(t). We also assume that n(t) ↑ ∞ as t ↓ t0. Then we

have

limt↓t0
H(t) ≥ limn→∞

dn.

Similarly for t < t0, we assume that there is a positive integer n(t) such that

H(t) ≥ dn(t) for the real valued function H(t). We also assume that n(t) ↑ ∞
as t ↑ t0. Then we have

limt↑t0
H(t) ≥ limn→∞

dn.

Theorem 4. Let A1(xn(ω)) = [x, y] with r1 < x ≤ y < 1 where

(
p1

a1
)r1(

p2

a2
)1−r1 = 1.

If

1 ≤
y

x
<

log( p1

a1

)x( p2

a2

)1−x

− log p2
+ 1

and

1 ≤
1− x

1− y
<

log( p1

a1

)x( p2

a2

)1−x

− log p1
+ 1,

then

f ′(π(ω)) = ∞.

Proof. Consider π(ω′) = t′ > π(ω) = t. Then there exists n such that ω′|n =
ω|n and ω′|(n+1) 6= ω|(n+1) with In = π(ω|n). Let ǫ > 0 such that x−ǫ > r1.
Since ω ∈ F [x, y] that is

x = limn→∞

n

z1(ω, n)
≤ limn→∞

n

z1(ω, n)
= y,

z1(ω,n+1)
z1(ω,n) < y

x
+ ǫ for all large n. Clearly for all large n

z1(ω,n)
∏

l=1

(
pω(l)

aω(l)
)1/z1(ω,n) = (

p1

a1
)

n
z1(ω,n) (

p2

a2
)

z1(ω,n)−n

z1(ω,n) ≥ (
p1

a1
)x−ǫ(

p2

a2
)1−(x−ǫ)

since

limn→∞

n

z1(ω, n)
≥ x.

For Im = Kω|m, so satisfying
⋂

∞

m=1 Im = {t}, we have for all large n

f(π(ω′))− f(π(ω))

π(ω′)− π(ω)
≥

p
z1(ω,n+1)−z1(ω,n)
2 p1|f(Iz1(ω,n)−1)|

|Iz1(ω,n)−1|
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= a1p
z1(ω,n+1)−z1(ω,n)
2

z1(ω,n)
∏

l=1

pω(l)

aω(l)

= a1(p
z1(ω,n+1)

z1(ω,n)
−1

2 (
p1

a1
)

n
z1(ω,n) (

p2

a2
)

z1(ω,n)−n

z1(ω,n) )z1(ω,n)

≥ a1(p
y
x
+ǫ−1

2 (
p1

a1
)x−ǫ(

p2

a2
)1−(x−ǫ))z1(ω,n).

This and the above lemma give for t = π(ω) and t′ = π(ω′),

limt′↓t

f(t′)− f(t)

t′ − t
≥ limn→∞

a1(p
y
x
−1

2 (
p1

a1
)x(

p2

a2
)1−x)z1(ω,n) = ∞

since y

x
< 1 +

log(
p1
a1

)x(
p2
a2

)1−x

− log p2

⇐⇒ p
y
x
−1

2 ( p1

a1

)x( p2

a2

)1−x > 1 and z1(ω, n) ↑ ∞ as

n ↑ ∞.
Now, since ω ∈ F [x, y] that is

x = limn→∞

n

z1(ω, n)
≤ limn→∞

n

z1(ω, n)
= y,

we have

1− y = limn→∞

n

z2(ω, n)
= 1− limn→∞

n

z1(ω, n)

≤ limn→∞

n

z2(ω, n)
= 1− limn→∞

n

z1(ω, n)
= 1− x.

Therefore z2(ω,n+1)
z2(ω,n) < 1−x

1−y
+ ǫ for all large n. Clearly for all large n

z2(ω,n)
∏

l=1

(
pω(l)

aω(l)
)1/z2(ω,n) = (

p1

a1
)

z2(ω,n)−n

z2(ω,n) (
p2

a2
)

n
z2(ω,n) ≥ (

p1

a1
)x−ǫ(

p2

a2
)1−(x−ǫ)

since

limn→∞

n

z2(ω, n)
≤ 1− x.

Similarly for t′ < t, by

1 ≤
1− x

1− y
<

log( p1

a1

)x( p2

a2

)1−x

− log p1
+ 1,

limt′↑t

f(t′)− f(t)

t′ − t
≥ limn→∞

a2(p
1−x
1−y

−1

1 (
p1

a1
)x(

p2

a2
)1−x)z2(ω,n) = ∞

follows from the similar arguments above. �

Remark 5. In the above theorem,

min

{

log( p1

a1

)x( p2

a2

)1−x

− log p2
,
log( p1

a1

)x( p2

a2

)1−x

− log p1

}

> 0

since ( p1

a1

)x( p2

a2

)1−x > 1 from x > r1.
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From now on, we put

g(r, p) =
r log p+ (1− r) log(1− p)

r log a1 + (1− r) log a2
.

In fact, the above expression of g(r, p) is same as that of g(r, p) in our Intro-
duction.

Corollary 5. The Hausdorff and packing dimension of the set of the infinite

derivative points is

g(r1, r1),

where ( p1

a1

)r1( p2

a2

)1−r1 = 1.

Proof. From Theorem 13 of [2], the upper bound for the packing dimension of
the set of the infinite derivative points is g(r1, r1). From the above theorem,
f ′(π(ω)) = ∞ for any ω ∈ F [r, r] where r1 < r < 1. Since the lower bound for
the Hausdorff dimension of

⋃

r1<r<1 π(F [r, r]) is g(r1, r1) [3], it follows. �

Remark 6. The solution r1 satisfying ( p1

a1

)r1( p2

a2

)1−r1 = 1 is the solution of the

equation g(r, p1) = 1. Therefore the solution r1 is the same as the solution r(1)
in our Introduction. Noting Theorem 13 of [2], we remark

0 < g(r1, r1) < 1.

Using the sufficient condition for the null derivative of the RNT singular
function, we have an upper bound less than 1 for the Hausdorff dimension of
its non-differentiability set. For this, we need a lemma. From now on, we
denote dim(E) the Hausdorff dimension of set E.

Lemma 6. Let F (x) = ∪x≤y≤1F [x, y] and F (y) = ∪0≤x≤yF [x, y]. Then, for

x > a1,

dim(∪x≤t≤1π(F (t))) ≤ g(x, x).

Similarly, for y < a1,

dim(∪0≤t≤yπ(F (t))) ≤ g(y, y).

Proof. We note that g(t, x) ≤ g(x, x) < 1 for a1 < x ≤ t ≤ 1 and g(t, y) ≤
g(y, y) < 1 for 0 ≤ t ≤ y < a1. It essentially follows from Theorem B (1.3) of
[3] or Theorem 1.2 of [10]. �

Theorem 7. Let S be the non-differentiability set of the RNT function f

satisfying a1 6= p1. Then

g(r1, r1) ≤ dim(S) < 1,

where ( p1

a1

)r1( p2

a2

)1−r1 = 1.

Proof. dim(S) ≥ g(r1, r1) follows from [2]. Therefore we only need to show
dim(S) < 1. We see that f ′(t) = 0 for the point t = π(ω) where ω ∈ F [x, y]

satisfying 1 ≤ y

x
<

log(
p1
a1

)y(
p2
a2

)1−y

log a2

+ 1 and 1 ≤ 1−x
1−y

<
log(

p1
a1

)y(
p2
a2

)1−y

log a1

+ 1 for
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0 < x ≤ y < r1 from the above Theorem 2. That is, f ′(t) = 0 for the point
t = π(ω) where ω ∈ F [x, y] satisfying

x ≤ y < c1(x) =
log p2

log a2

x
− log p1

a1

+ log p2

a2

and

c2(y) < x ≤ y,

where

c2(y) = (α− β)y2 + (2β − α+ 1)y − β

with

α =
log p1

a1

log a1
< 0

and

β =
log p2

a2

log a1
.

We note that c1(r1) = r1 and limx↓0 c1(x) = 0 and c2(r1) = r1 and c2(0) < 0
with c′(r1) = 1−α > 1. Noting this, we can easily show that there is δ > 0 such
that f ′(t) = 0 for the point t = π(ω) where ω ∈ F [x, y] with the coordinate

(x, y) ∈ D = {(x′, y′) : x′ ≤ y′ ≤ a1 + δ, a1 − δ ≤ x′ ≤ a1 + δ}.

Noting the above lemma, we have

dim(S) ≤ max{g(a1 − δ, a1 − δ), g(a1 + δ, a1 + δ)} < 1

since S ⊂ π({ω ∈ F [x, y] : (x, y) ∈ D})c. �
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